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SUMMARY
We revisit the idea of microscale yielding being responsible for attenuation of small amplitude waves in a
wide frequency range. We consider microscopic rate-independent irreversible deformation around cavities
causing local stress amplification in pre-stressed porous media as a mechanism responsible for frequency
independent attenuation. Following the effective media approach, we consider low porosity material
containing non-interacting isolated spherical pores under cyclic loading by isotropic stress field imitating
passage of a wave, and evaluate resulting dissipation in terms of quality factor Q. Assuming initial local
microscopic stress state around the cavity at the yield, we show that even for small seismic strains
attenuation can be high and independent of both frequency and strain amplitude.
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Introduction. Energy dissipation accompanying the wave propagation process results in 
attenuation of waves over a broad frequency range. Significant effort during the past years 
was focused on quantification of attenuation properties as well as on the attempts to identify 
the mechanism responsible for the phenomenon. Observations show that for the low-
frequency seismic waves the specific attenuation factor 1/Q is nearly independent of 
frequency regardless of a fluid saturation. In very dry materials 1/Q is independent of 
frequency over the whole range of frequencies (Knopoff, 1964; Kibblewhite, 1989). Several 
major possible mechanisms of attenuation were proposed: matrix anelasticity; attenuation due 
to viscosity and flow of saturating fluids; patchy and partial saturation effects; energy 
absorbed in systems undergoing phase changes; scattering from inclusions and pores. Matrix 
anelasticity was thought to contribute in two different ways: through intrinsic anelasticity of 
matrix minerals and through frictional dissipation due to relative motions at the grain 
boundaries and across crack surfaces. Attenuation due to intrinsic anelasticity of minerals was 
assumed to be negligible and to have the wrong frequency dependence, though the idea of 
frictional sliding of mineral grain boundaries was popular due to works of Walsh (1966) and 
Mindlin and Deresiewicz (1953). Unlike other proposed mechanisms these frictional 
dissipation models predicted Q that was independent of frequency as was observed in low-
frequency data. However, it was concluded that at low strains ( 610−< ) typical to seismic 
waves, the behavior of rocks is linear and a nonlinear mechanism such as friction cannot be 
accepted (Winkler et al. 1979). Besides, these frictional models showed the specific 
attenuation factor 1/Q to be proportional to strain amplitude while early experiments 
suggested attenuation independent of strain amplitude (Mavko, 1979); and, finally, it was 
concluded that frictional losses at small strains were negligible in rock samples, based on 
calculations by Savage (1969).  

However, friction is still considered to be one of the most important sound attenuation 
mechanisms in marine sediments (Kibblewhite, 1989; Buckingham, 2000). The series of 
recent observations show the presence of nonlinear effects in rocks at strains as small as 910−  
and the lower limit of nonlinearity was not yet observed (Johnson and Rasolofosaon, 1996; 
Beresnev and Wen, 1996). Over broad ranges of stress, strain, and frequency rocks exhibit 
nonlinear stress-strain relations, dependence of wave velocity and attenuation on strain 
amplitude and even the presence of permanent deformation. Indirect evidence for the latter 
comes from small strain laboratory experiments frequently reporting cusped stress-strain 
hysteresis loops. The permanent and, importantly, time independent (alternatively termed as 
irreversible or plastic) deformation in rocks at typical seismic strains was explicitly observed 
in experiments by Mashinsky (1994) who recorded that irreversible and elastic strains are 
about equal at strains of the order 6 510 10− −− . Plastic deformation by virtue of its rate 
independent nature leads to frequency independence of attenuation. Plastic yielding is not 
expected if a stress-free rock sample is loaded by small seismic strains. However, sediments 
may be already in a yield state or close to it as a result of complex burial and tectonic loading 
history. Moreover, rocks are very heterogeneous and these heterogeneities may act as local 
stress concentrators, so that the actual microscopic stresses around cavities and inclusions 
may be much higher than the macroscopic stress level. We study attenuation of seismic waves 
due to local plastic yielding around the cavities in porous media. We are aiming for an 
understanding of an anomalously high attenuation level frequently inferred for the reservoirs 
(Korneev et al. 2004; Chapman et al. 2006). Reservoirs may dissipate sound in a similar way 
to the shallow marine sediments due to either their high porosity or for any other reason.  
Model of attenuation due to plastic yielding. In our modeling of attenuation in porous 
media we follow the effective media theory approach. We consider a single spherical cavity 
of radius R in an incompressible matrix subjected to a confining far-field pressure P∞  at the 
remote boundary (Fig. 1). The cavity wall is subjected to pore pressure p. So, the behavior of 
the solid in general is controlled by the effective pressure P P p∞Δ = − , which is prescribed 
to vary in time as a periodic function to imitate a seismic wave coming in and passing away. 
We assume stresses as positive in tension and pressures positive in compression. If the initial 
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undisturbed effective pressure 0 0 0P P p∞Δ = −  is high enough, the plastic region of radius c 
will develop around the cavity and the initial stress state will be elastoplastic. The distribution 
of stress, strain and velocity fields in the volume around the cavity during wave propagation 
we find from the solution of the problem of mechanical equilibrium by methods of 
mathematical theory of elastoplasticity. Effective properties of the aggregate porous media 
can be extracted from this solution based on the average theorems. A similar elastoplastic 
spherical model was previously used by Carroll and Holt (1972) to successfully predict the 
volumetric response of porous rocks and metals to a hydrostatic pressure within the range of 
10-70% porosity. 

 
 

Figure 1. Model of a representative volume element of porous media. 
 
Overall properties of porous aggregate. Average theorems of the effective media theory 
state that for the representative volume with prescribed boundary tractions the average 
effective pressure of a porous aggregate is fully defined by the values of pressures at the 
external and internal boundaries (Nemat-Nasser and Hori, 1999) and, in our case, is equal 
to PΔ . Porosity ϕ  plays an important role in describing the response of porous media. We 
define the porosity as a volume fraction of the voids 
 ,v s vV V V V Vϕ = = +  
where V, vV  and sV  are the total volume and volumes of the cavity and of the solid matrix, 
respectively. Since the solid matrix is incompressible the porosity equation can be written as 

(1 ) v vd dV Vϕ ϕ ϕ− = .Changes of the void volume vV  are linked to the evolution of the 
cavity radius R, therefore one can write (1 ) 3d dR Rϕ ϕ ϕ− = . The average volumetric strain 
rate is the surface integral taken over the outer boundary of the representative volume 

v v
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From this, the average logarithmic volumetric strain is ( )0ln (1 ) (1 )ve ϕ ϕ= − − . As can be 
seen, in order to describe the overall properties of porous media one needs to know porosity 
evolution in the material, which in its turn is totally defined by the radius of the cavity. 
Initial stress state around the cavity. According to von Mises yield criterion the plastic 
region will develop when the effective pressure exceeds the critical value 4 3crP YΔ =  with Y 
being a yield limit of the matrix material. We assume that the initial undisturbed value of the 
effective pressure is 0 crP PΔ ≥ Δ . In this case there are two different stress fields in a volume. 
The first one corresponds to the plastic region 0 0R r c≤ ≤ . Here r is a polar radius and 
subscript 0 designates the initial values of corresponding quantities. Radial stress rσ  and the 
hoop stress θσ  in the plastic region are fully determined by an equilibrium equation and von 
Mises yield criterion: 
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2r Yθσ σ− =       (2) 
In the elastic region 0r c≥  one has equilibrium equation (1), Hooke’s law 

( ) (6 )ru r θσ σ μ= −  and incompressibility equation 2 0u r u r∂ ∂ + = . These three 
equations together with condition of stress continuity at the elastoplastic interface define two 
stress components rσ , θσ  and radial displacement u. 
Loading. A passing seismic wave causes both unloading and further loading. We first 
consider the latter case resulting in further dissipative plastic flow. Though the solid matrix is 
incompressible we cannot find the radial velocity v independent of stresses since boundary 
conditions are defined for stresses. We solve the coupled system of incompressibility equation 

2 0v r v r∂ ∂ + =      (3) 
and eqs (1), (2) in the plastic region and eqs (1), (3) and incremental version of Hooke’s law 

( )1
6 r

v
r t θσ σ

μ
∂= −
∂

     (4) 

in the elastic region. At the elastoplastic interface continuity of stresses must be preserved. 
The solution of these equations gives to us stresses, the radius of the elastoplastic boundary 
and the value of velocity during the first cycle of loading. Taking into consideration that 

dtdRv =  at the cavity wall we find the radius of the cavity and porosity equation for 
loading 

 
3 3

3 3

3
(1 ) 4
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ϕ
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where ( )exp (4 ) 1 3c R P Y= Δ − .  
Unloading. Decreasing effective pressure and elastic unloading of the pore is described by 
elastic equations (1), (3) and (4) for rσ , θσ  and v. Porosity increments while unloading are 
related to the effective pressure increments by 
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− + + Δ − Δ +

  

where uR  and uPΔ  are values of the cavity radius and effective pressure at the onset of 
unloading. If the amplitude of the wave is high enough the decrease of the effective pressure 
may be accompanied by the reverse plastic flow. It will happen if stresses during unloading 
will reach the critical value ( )( ), 4 3 ln 1 2 2cr rev flow uP P Y Y μΔ = Δ + − − . We do not consider 
this case here and assume entire unloading is purely elastic. If plastic yielding does not occur 
during unloading than stresses and velocity evolution during the final reloading part of the 
cycle are defined by the same equations as during unloading. Since elastic parts of the loading 
cycle naturally do not contribute to the dissipation we, therefore, give the lower bound 
estimate for the attenuation.  
Results and discussion. As a measure of attenuation in porous media we choose the specific 

attenuation factor 1/Q, defined as 2 Q E Eπ = Δ , where 
0

ve

vE P deΔ = − Δ∫  is the amount of 

energy dissipated per cycle of a harmonic loading and max( )vE P e= −Δ ⋅  is a peak strain 
energy. Q is further computed as a function of four dimensionless parameters: ratio of initial 
effective pressure to the yield stress ( 0P YΔ ), strain amplitude e, porosity and ratio of the 
yield stress to the shear modulus (Y μ ). Dependence of Q on Y μ  and porosity is relatively 
unimportant within the low porosity range of 10-50%. Contouring of Q versus the remaining 
two parameters is shown on Fig 2a for Y μ = 33 and 10% porosity. The collapse of this two-
dimensional data while allowing for porosity variation in the 10-50% range on a single master 
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curve is presented in Fig 2b. As expected, the attenuation factor 1/Q is strongly strain 
amplitude dependent at large strains ( 510−> ) and is indeed negligible if the initial effective 
pressure is small. However, at larger initial effective pressures, large values of attenuation are 
predicted while preserving strain amplitude independence for the small strain amplitudes 
( 510−< ) in agreement with experimental observations and intuitive expectations. 
 

 
 

Figure 2. Model predictions and data collapse for quality factor Q. 
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