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Abstract.

Analytical expressions for three P-wave attenuation mechanisms in sedimen-

tary rocks are given a unified theoretical framework. Two of the models concern wave-
induced flow due to heterogeneity in the elastic moduli at “mesoscopic” scales (scales greater
than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is

due to lithological variations (e.g., mixtures of sands and clays) with a single fluid sat-
urating all the pores. In the second model, a single uniform lithology is saturated in meso-
scopic “patches” by two immiscible fluids (e.g., air and water). In the third model, the
heterogeneity is at “microscopic” grain scales (broken grain contacts and/or micro-cracks
in the grains) and the associated fluid response corresponds to “squirt flow.” The model

of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack
porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable

of explaining the measured level of loss (1072 < Q~! < 107!) within the seismic band

of frequencies (1 to 10* Hz); however, either of the two mesoscopic scale models easily

produce enough attenuation to explain field data.

1. Introduction

The physics controlling the intrinsic seismic attenuation
of sedimentary rock throughout the seismic band of frequen-
cies (say 1 to 10" Hz) is still not entirely understood. In par-
ticular, seismic data from sedimentary regions often exhibits
more intrinsic attenuation than can be explained using ex-
isting theoretical models. The principal goal of this paper
is to provide models that can help explain the levels of loss
determined from seismograms.

Intrinsic loss is often quantified using the inverse quality
factor Q' which represents the fraction of wave energy lost
to heat in each wave period. For seismic-transmission exper-
iments (earthquake recordings, VSP, cross-well tomography,
sonic logs), the total attenuation inferred from the seismo-
grams can be decomposed as Q;Otal = Quiy + Q7" where
both the scattering and intrinsic contributions are necessar-
ily positive. Multiple scattering transfers energy from the
coherent first-arrival pulse into the coda and into directions
that will not be recorded on the seismogram, and is thus
responsible for the effective “scattering attenuation” Q...
Techniques have been developed that attempt to separate
the intrinsic loss from the scattering loss in transmission
experiments [e.g., Wu and Aki, 1988, and Sato and Fehler,
1998]. In seismic-reflection experiments, back-scattered en-
ergy from the random heterogeneity can sometimes act to
enhance the amplitude of the primary reflections. At the
present time, techniques that can reliably separate the to-
tal inferred loss into scattering and intrinsic portions are
generally not available.

Crosswell experiments in horizontally-stratified sediments
produce negligible amounts of scattering loss so that essen-
tially all apparent loss (except for easily corrected spherical
spreading) is attributable to intrinsic attenuation. Quan
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and Harris [1997] use tomography to invert the amplitudes
of crosswell P-wave first arrivals to obtain the Q' for the
layers of a stratified sequence of shaly sandstones and lime-
stones (depths ranging from 500-900 m). The center fre-
quency of their measurements is roughly 1750 Hz and they
find that 1072 < Q™' < 107! for all the layers in the se-
quence. Sams et al. [1997] also measure the intrinsic loss
in a stratified sequence of water-saturated sandstones, silt-
stones and limestones (depths ranging from 50-250 m) using
VSP (30-280 Hz), crosswell (200-2300 Hz), sonic logs (8-
24 kHz), and ultrasonic laboratory (500-900 kHz) measure-
ments. Sams et al. [1997] calculate (with some inevitable
uncertainty) that in the VSP experiments, Q~'/QLL, ~ 4,
while in the sonic experiments, Qil/Q;;t ~ 19; i.e., for
this sequence of sediments, the intrinsic loss dominates the
scattering loss at all frequencies. Sams et al. [1997] also find
1072 < Q7! < 107! across the seismic band.

It will be demonstrated here that wave-induced fluid flow
generates enough heat to explain these measured levels of
intrinsic attenuation. Other attenuation mechanisms need
not be considered, although they may in fact be present,
since they are likely contributing much smaller percentages
to the overall observed attenuation. The induced flow occurs
at many different spatial scales that can broadly be catego-
rized as “macroscopic”, “mesoscopic”, and “microscopic.”

The macroscopic flow is the wavelength-scale equilibra-
tion occurring between the peaks and troughs of a P-wave.
This mechanism was first treated by Biot [1956a, b] and is
often simply called “Biot loss.” However, the flow at such
macro-scales drastically underestimates the measured loss in
the seismic band (by as much as 5 orders of magnitude). Two
possible alternatives to Biot loss were therefore proposed in
the mid-seventies.

First, Mavko and Nur [1975, 1979], Budiansky and
O’Connell [1976], and O’Connell and Budiansky [1977] pro-
posed a microscopic mechanism due to microcracks in the
grains and/or broken grain contacts. When a seismic wave
squeezes a rock having such grain-scale damage, the cracks



X-2

respond with a greater fluid pressure than the main pores-
pace resulting in a flow from crack to pore that Mavko
and Nur [1975] named “squirt flow”. Dvorkin et al. [1995]
have also presented a squirt-flow model applicable to liquid-
saturated rocks. Although squirt flow seems capable of ex-
plaining much of the measured attenuation in the labora-
tory at ultrasonic frequencies and may also turn out to be
important for propagation in ocean sediments at ultrasonic
frequencies [ Williams et al., 2002], we show here that this
mechanism cannot explain the attenuation in the seismic
band.

Second, White [1975] and White et al. [1975] modeled the
wave-induced flow created by mesoscopic-scale heterogene-
ity. Mesoscopic length scales are those larger than grain sizes
but smaller than wavelengths. Heterogeneity across these
scales may be due to lithological variations or to patches
of different immiscible fluids. When a compressional wave
squeezes a material containing mesoscopic heterogeneity, the
effect is similar to squirt with the more compliant portions
of the material responding with a greater fluid pressure than
the stiffer portions. There is a subsequent flow of fluid ca-
pable of generating significant loss in the seismic band.

White [1975] considered the flow in a concentric porous-
sphere model in which the inner sphere is saturated by one
fluid type (say gas), the outer shell is saturated by another
fluid type (say liquid), and the porous frame properties are
everywhere uniform. This is the first so-called “patchy satu-
ration” model. White had the insight to use the Biot [1956]
theory as the local model for the mesoscopic flow between
the spheres. Dutta and Odé [1979a,b] and Dutta and Seriff
[1979] went on to make several important corrections to the
initial White [1975] model, adding to our understanding of
the low-frequency and high-frequency limits. White’s [1975]
prediction of enhanced attenuation in the presence of even
small volume fractions of gas phase has been experimentaly
confirmed [e.g., Murphy, 1982, 1984; Cadoret et al., 1998].

White et al. [1975] considered the wave-induced flow be-
tween the mesoscopic-scale layers in a sedimentary basin.
Here the mesoscopic heterogeneity is in the frame proper-
ties of the porous rocks with a single fluid saturating all lay-
ers. Again, Biot theory was used as the local model for the
mesoscopic flow. A host of theoretical refinements have sub-
sequently been added to White’s initial model of mesoscopic
flow in finely-layered media [e.g., Norris, 1993; Gurevich and
Lopatnikov, 1995; Gelinsky and Shapiro, 1997].

More recent work by Johnson [2001] has treated wave-
induced mesoscopic flow due to patchy saturation without
placing restrictions on the patch geometries. The present
study also seeks to model the wave-induced flow for arbitrary
mesoscopic geometry due either to lithological variations or
to patchy saturation, albeit under the restriction that only
two porous phases are mixed together in each averaging vol-
ume. Furthermore, our same formalism is shown to produce
new exact results at both low and high frequencies for the
Dvorkin et al. [1995] squirt-flow model.

In section 2, we review the recent theory of Pride and
Berryman [2003a,b] treating the mesoscopic loss created by
lithological patches having, for example, different degrees of
consolidation. This so-called “double-porosity” model pro-
vides the theoretical framework that will be used through-
out. In section 3, we re-analyze the patchy-saturation model
of Johnson [2001] and demonstrate numerically that our
double-porosity approach to the problem is asymptotically
identical to Johnson’s result in the limits of low and high
frequencies (both analyses are exact for the model in these
two limits, but may differ somewhat at intermediate frequen-
cies). In section 4, we provide a new analysis of the Dvorkin
et al. [1995] squirt-flow model that is numerically compared
to the approximate analysis of Dvorkin et al. [1995]. Fi-
nally, in the concluding section 5, we summarize what has
been learned from these models.

PRIDE ET AL.: WAVE-INDUCED FLOW LOSSES

2. Review of the Double-Porosity Theory

In this theory, the mesoscopic heterogeneity is modeled as
a mixture of two porous phases saturated by a single fluid.

Various scenarios can be envisioned for how two porous
phases might come to reside within a single geological sam-
ple. For example, even within an apparently uniform sand-
stone formation, there can remain a small volume fraction
of less-consolidated (even non-cemented) sand grains. This
is because diagenesis is a transport process sensitive to even
subtle heterogeneity in the initial grain pack resulting in
spatially variable mineral deposition [e.g., Thompson et al.,
1987] and, supposedly, spatially variable elastic moduli. Al-
ternatively, the two phases might correspond to interwo-
ven lenses of detrital sands and clays ; however, any associ-
ated anisotropy in the deviatoric seismic response will not
be modeled in the present paper. Jointed rock is also well
modeled as a double-porosity material. The joints or macro-
scopic fractures are typically more compressible and have a
higher intrinsic permeability than the background host rock
they reside within.

2.1. Local Governing Equations

Each porous phase is locally modeled as a porous contin-
uum and obeys the laws of poroelasticty [e.g., Biot, 1962]

Vo1 = Vpe = piti +prQi, 1)
Q = —%(foi—t-pfﬁi), (2)

V- 1 1 —wo Pei
Vol - w e am] ] @
P = G <vui+Vuf—§V~uiI)v (4)

where the index 7 represents the two phases (¢ = 1,2). The
response fields in these equations are themselves local vol-
ume averages taken over a scale larger than the grain sizes
but smaller than the mesoscopic extent of either phase. The
local fields are: u;, the average displacement of the frame-
work of grains; Q;, the Darcy filtration velocity; pys;, the
fluid pressure; p.;, the confining pressure (total average pres-
sure); and 7, the deviatoric (or shear) stress tensor. In the
linear theory of interest here, the overdots on these fields de-
note a partial time derivative. In the local Darcy law (2),
n is the fluid viscosity and the permeability k; is a linear
time-convolution operator whose Fourier transform k;(w) is
called the “dynamic permeability” and can be modeled using
the theory of Johnson et al. [1987] (see the appendix).

In the local compressibility law (3), K¢ is the drained
bulk modulus of phase i (confining pressure change divided
by sample dilatation under conditions where the fluid pres-
sure does not change), B; is Skempton’s [1954] coefficient of
phase 4 (fluid pressure change divided by confining pressure
change for a sealed sample), and «; is the Biot and Willis
[1957] coefficient of phase ¢ defined as

a; = (1 - K{/K{")/Bi, (5)

where K" is the undrained bulk modulus (confining pressure
change divided by sample dilatation for a sealed sample). In
the present work, no restrictions to single-mineral isotropic
grains will be made. Finally, in the deviatoric constitutive
law (4), G; is the shear modulus of the framework of grains.
At the local level, all these poroelastic constants are taken
to be real constants. In the appendix we give the Gassmann
[1951] fluid-substitution relations that allow B; and «; to
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be expressed in terms of the porosity ¢;, the fluid and solid
bulk moduli K; and K, and the drained modulus K.

2.2. Double-Porosity Governing Equations

In the double-porosity theory, the goal is to determine the
average fluid response in each of the porous phases in addi-
tion to the average displacement of the solid grains [Berry-
man and Wang, 1995]. The averages are taken over regions
large enough to significantly represent both porous phases,
but smaller than wavelengths. Assuming an e *’* time de-
pendence, Pride and Berryman [2003a] have used volume
averaging of the local laws (1)—(4) to obtain the macroscopic
“double-porosity” governing equations in the form

V-1 = VP. = —iw(pv + prai + psaz), (6)
2] o
q2 n | K12 Ka2 fo2 —iwpysv |’
V.-v a1l aiz ais P, 0
V-qi | =iw | a12 a2 ass Py |Tiw | Gnt | (8)
V- qz a13 a3 as3 Ds2 —int
—iw(int = ¥(w) (ﬁﬂ - pf2)7 (9)

—iwt? = [G(w) — iwg(w)] [Vv +(vv)' - %V . VI:|(10)

The macroscopic fields are: v, the average particle velocity
of the solid grains throughout an averaging volume of the
composite; q;, the average Darcy flux across phase i; P,
the average total pressure in the averaging volume; 77, the
average deviatoric stress tensor; p;,;, the average fluid pres-
sure within phase i; and —iw(int, the average rate at which
fluid volume is being transferred from phase 1 into phase 2
as normalized by the total volume of the averaging region.
The dimensionless increment (i, represents the “mesoscopic
flow.”

Equation (7) is the generalized Darcy law allowing for
fluid cross-coupling between the phases [c.f., Pride and
Berryman, 2003b], equation (8) is the generalized compress-
ibility law where V - q; corresponds to fluid that has been
depleted from phase 7 due to transfer across the external sur-
face of an averaging volume, and equation (9) is the trans-
port law for internal mesoscopic flow (fluid transfer between
the two porous phases).

The coefficients a;; and v in these equations have been
modeled in detail by Pride and Berryman [2003a,b]. Before
presenting these results in the following subsections, the na-
ture of the waves implicitly contained in these laws is briefly
commented upon. If plane-wave solutions for v, q; and q2
are introduced, there is found to be a single transverse wave,
and three longtitudinal responses: a fast wave and two slow
waves [Berryman and Wang, 2000]. The fast wave is the
usual P-wave identified on seismograms, while the two slow
waves correspond to fluid-pressure diffusion in phases 1 and
2. The only problem with analyzing the fast compressional
wave in this manner is that the characteristic equation for
the longitudinal slowness s is cubic in s> and, therefore,
somewhat inconvenient for analysis.

2.3. Reduction to an Effective Biot Theory

The approach that we take instead is first to reduce
these double-porosity laws (6)—(10) to an effective single-
porosity Biot theory having complex frequency-dependent
coefficients. The easiestway to do this is to assume that
phase 2 is entirely embedded in phase 1 so that the average
flux q2 into and out of the averaging volume across the ex-
ternal surface of phase 2 is zero. By placing V - q2 = 0 into
the compressibility laws (8), the fluid pressure p;, can be
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entirely eliminated from the theory. In this case the double-
porosity laws reduce to effective single-porosity poroelastic-
ity governed by laws of the form (3) but with effective poroe-
lastic moduli given by

2

ais

- = s R 11
Kp a asz —y/iw’ (11)
B —a12(ass — v/iw) + a13(azs + v/iw)

- . . . 27 (]‘2)

(az2 —v/iw)(ass — v/iw) — (a3 + v/iw)

1 1 a13(a23 + fy/iw)
= — == T 1
KU KD +B<a12 a33—’y/iw ( 3)

Here, Kp(w) is the effective drained bulk modulus of the
double-porosity composite, B(w) is the effective Skempton’s
coefficient, and Ky (w) is the effective undrained bulk mod-
ulus. An effective Biot-Willis constant can then be defined
using a(w) = [1 — Kp(w)/Kv(w)]/B(w).

The complex frequency dependent “drained” modulus Kp
defines the total volumetric response when the average fluid
pressure throughout the host phase 1 is unchanged. Due
to the fluid pressure differences between the two phases,
fluid-pressure equilibration ensues which results in Kp being
complex and frequency dependent. Similar interpretations
hold for the undrained moduli Ky and B. An undrained
response is when no fluid can escape or enter through the
external surface of an averaging volume; however, there can
be considerable internal exchange of fluid between the two
phases resulting in the complex frequency-dependent nature
of both Ky and B.

2.4. Double-Porosity a;; Coefficients

The constants a;; are all real and correspond to the high-
frequency response for which no internal fluid-pressure re-
laxation can take place. They are given exactly as [Pride
and Berryman, 2003a]

aljl = 1/K (14)
V101 1 Oél(l - Ql)
_ 1 — &) 1
42 = Tga <31 1- K{/K¢ (15)
V202 1 042(1 - QQ)
_ = _ —__ w2 16
o = 5 (- e 1o
aljg = —U1Q1051/K111 (17)
a3 = —v2Q202/K$ (18)
ayy — _0aK{/KS (1 v v (19)
* (1-K{/K§2 \K K{ K
where the ); are auxiliary constants given by
1-K¢/K 1-K{/K
=~ 27 = 2
v1Q1 T K /K7 and v2Q2 1= Ki/KS (20)

Here, v1 and v2 are the volume fractions of each phase within
an averaging volume of the composite.

The one constant that has not yet been determined is the
overall drained modulus K = 1/a11 of the two-phase com-
posite (the modulus defined in the quasi-static limit where
the local fluid pressure throughout the composite is every-
where unchanged). It is through K that the a;; acquire their
dependence on both the mesoscopic geometry and shear
properties of each porous phase. Having expressions for how
K depends on the properties of the two constituents is quite
useful even though an exact analytical model applicable to
any given double-porosity scenario may not be known.

The Hashin and Shtrikman [1963] bounds for the overall
low-frequency drained bulk modulus K and shear modulus
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G of the composite can be written

1 V1 V2
= 21
K+4C./3 ~ Ki+4G./3 W KI+4G./3’ 1)
1 V1 V2
= 22
Gra T GirG @ (22)
where (; is defined by
G (9KZ + 8G;
¢ =Gl ) (23)

6 (K;i + QGl) '

We will find it natural to define dphase 2 as being more com-
pliant than phase 1 so that K§ < K¢ and G2 < G1. In
this case, the upper limits for K and G are obtained by
taking ¢ = 1 and the lower limits by taking ¢ = 2. Interest-
ingly, the upper limit is exactly realized when phase 2 is a
sphere surrounded by a spherical shell of phase 1 [Hashin,
1962], while the lower limit is exactly realized when the
differential-effective-medium theory of Bruggeman [1935] is
used to model phase 2 as a collection of arbitrarily-oriented
penny-shaped oblate spheroids or disks [Roscoe, 1973].

To help decide which effective-medium model is most ap-
propriate, consider the following geological situations. Any
small portions of a consolidated-sandstone formation that
received little or no secondary mineral deposition will likely
have a shape that is more dendritic than compact because
mineral deposition is a transport process. Furthermore, sce-
narios in which thin clay lenses are engulfed by sand de-
posits will correspond to an embedded phase 2 geometry
that is more like a penny-shaped oblate spheroid than a
compact sphere. Similar comments also hold for situations
in which phase 2 corresponds to macroscopic fractures or
joints embedded within a stiffer sandstone host. In each of
these cases, the lower Hashin and Shirikman [1963] bounds
are more appropriate than the upper bounds. Our model-
ing approach is simply to use the lower bounds for modeling
K and G in these situations. As will be demonstrated in
a numerical example, using the upper bound for K and G
produces much less mesoscopic-flow loss and dispersion than
using the lower bound.

Finally, all dependence of the a;; on the fluid’s bulk mod-
ulus is contained within the two Skempton’s coefficients
By and B> and is thus restricted to as2 and az3. In the
quasi-static limit w — 0 (fluid pressure everywhere uniform
throughout the composite), equations (12) and (13) reduce
to the known exact results of Berryman and Milton [1991]
once equations (14)—(19) are employed.

2.5. Double-Porosity Transport

Pride and Berryman [2003b] obtain the internal trans-
port coefficient v of equation (9) as

w
= Va1 — i—
7w) = Yy f1 =i

where v,, and w,, are parameters dependent on the con-
stituent properties and the mesoscopic geometry. To obtain
useful analytical results, some type of approximation is re-
quired.

Normally, the double-porosity model is useful (or neces-
sary) only in situations where the two phases have strong
contrasts in their physical properties. When the embedded
phase 2 is much more permeable than the host phase 1,
Pride and Berryman [2003b] find that

(24)

Tm =

3 ki K¢ <a12 + Bo(a22 + ass)

nL% R, — Bo/Bl ) [1 +O(k1/k2)]7

(25)
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where the a;; are given by equations (14)—(19) and where
the remaining terms B,, L1 and R; are now defined.

The dimensionless quantity B, is the static Skempton’s
coefficient for the composite and is given exactly by

(a12 + a13)

By = — 42T 013)
a22 + 2a23 + ass

(26)

regardless of the mesoscopic geometry.

The length L; characterizes the average distance in phase
1 over which the fluid-pressure gradient still exists in the
final approach to equilibration and has the formal mathe-
matical definition

=1/ s av=21
1Jo, Vl Q

Vo, - Vo, dV (27)

where 21 is the region of an averaging volume occupied by
phase 1 and having a volume measure V;. The potential
®; has units of length squared and is a solution of an el-
liptic boundary-value problem that under conditions where
the harmonic mean is a good approximation for the over-
all drained modulus and where the permeability ratio ki /k2
can be considered small, reduces to

V2®, = —1 in Qy, (28)
n-V®, = 0 on JdE, (29)
®; = 0on 02, (30)

where OF; is the external surface of the averaging volume
coincident with phase 1, and where 0212 is the internal in-
terface separating phases 1 and 2. Multiplying equation (28)
by ®: and integrating over 21, establishes that second inte-
gral of equation (27).

The dimensionless quantity R; is the ratio of the average
static confining pressure in phase 1 to the pressure applied
to the external surface of a sealed sample of the composite.
Pride and Berryman [2003a] derive this ratio to be

051(1 — Q1)Bo
1~ K{/K3

v2 az2(1 — Q2)B,

R =
1=t v 1— K&/K?

(31)

where the QQ; are given by equation (20). Thus, once the
overall drained modulus K is chosen (e.g., using the Hashin
and Shirikman [1963] lower bound), 7, can now be deter-
mined from equation (25).

If it is more appropriate to consider the host phase
1 as being more permeable than the embedded phase 2
(k2/k1 < 1), one needs only to exchange indices 1 and 2
throughout all of equations (25)—(31).

In passing, if it is assumed that the harmonic mean is a
reasonable approximation for the drained modulus of the
composite (ie., 1/K = v /K{ + v2/K$), then Q; = 1,
a3 = 0, Ry = 1 and all of the above expressions exactly

reduce to
U1 k1
Ym = ——= [1+ O(k1/k2)] . (32)
nlLi
However, the harmonic mean for K is special, and not always
appropriate, so we consider the lower Hashin and Shtrikman
[1963] bound as the preferable modeling choice for most ge-
ological situations of interest.
The transition frequency w., corresponds to the onset of
a high-frequency regime in which the fluid-pressure-diffusion
penetration distance between the phases becomes small rel-
ative to the scale of the mesoscopic heterogeneity. It is given

by Pride and Berryman [2003b] to be

2
nBi K¢ V)2 k1Ba K¢
m= 2 [y, ) (142
“ kron <7 S N\ TaBiK s (33)
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The length V/S is is the volume-to-surface ratio where S is
the area of 0212 in each volume V of composite.

The geometry of the phase 2 inclusion is affecting the
length parameters L; and V/S as well as the drained mod-
ulus K. Putting in a highly complicated multi-scale distri-
bution of phase 2 (even a fractal distribution) changes the
values of these three numbers but does not change the ana-
lytic structure of the above results for 7,, and wm,.

For complicated geometry, the length L; can only be de-
termined numerically or inverted for from data. For ideal-
ized geometries it can be analytically estimated. For exam-
ple, in a concentric-sphere geometry with k1/ke < 1, Pride
and Berryman [2003b] obtain

L3 = ﬂR2 1- %% +0(d®/R?)

where a is the radius of each sphere of phase 2 embedded
within each sphere R of composite. The volume fraction v
of embedded spheres is v2 = (a/R)? in this case so that R

can be eliminated using R = a/ vl/ ®. In the alternative case
where k2/k1 < 1, the length Lg for this same concentric-
sphere geometry is [e.g., Johnson, 2001] L3 = a?/15.

In the scenario of interest in which phase 2 is taken to be
penny-shaped lenses of one more compliant material mixed
into a stiffer phase-1 host, the length parameter L; can
at least be approximately estimated. Assuming that each
penny-shaped inclusion has a radius a and a thickness a
where ¢ is the aspect ratio of the inclusion, one can estimate
®; using a simple slab geometry. With the volume fraction
v2 and both a and ¢ treated as user—controlled parameters,
one finds that V/S = ae/(2v2) and L} = a?/12. These esti-
mates for L1 and V/S along with the Hashin and Shtrikman
[1963] lower bound for K and G will be the model treated
in the numerical examples that follow.

The coefficient G(w) — iwg(w) governing shear generally
has a non-zero “viscosity” g(w) associated with the meso-
scopic fluid transport between the compressional lobes sur-
rounding a sheared phase 2 inclusion. Both of the frequency
functions G(w) and —wg(w) are real and are Hilbert trans-
forms of each other. The frequency dependence of g(w)
was not modeled by Pride and Berryman [2003b], but is
presently being analyzed further by these authors. Here, we
continue to ignore any possible dispersion in the shear prop-
erties and take G to be a real constant given by the Hashin
and Shtrikman [1963] lower bound.

Finally, the dynamic permeability k(w) to be used in the
effective Biot theory can be modeled in several ways. The
appropriate modeling choice when phase 2 is modeled as
small inclusions embedded in phase 1 is the harmonic mean
1/k(w) = vl/kl(w) —+ vz/kz(u}) ~ vl/kl(w)[l + O(vzkl/kz)].

2.6. Phase Velocity and Attenuation

With all of the double-porosity coefficients now defined,
the compressional phase velocity and attenuation can be de-
termined by inserting a plane-wave solution into the effective
single-porosity Biot equations [of the form (1)—(4)]. This
gives the standard complex longtitudinal slowness s of Biot

theory
/ s 2
2 o PP PF
sT=bF /b VI =2 (34)
where ~
b— pM + pH —2p;C (35)

2(MH — C?)
is simply an auxiliary parameter, and where H, C' and M
are the Biot [1962] poroelastic moduli defined in terms of

the complex trequency-dependent parameters of equations
(11)-(13) as

H = Ky +4G/3, (36)

C = BKy, (37)
2

M= —2 k. (38)
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LU 0 1) O 1 SR 111 B B B 11 B N R AR

T T T TTTT7
Ll

T T TTTTTT

Sovv? v A vl vl 1

LN L 0 1) O 1 B 11 B B B 1L R A R RN

A500 [ s s e e e T

:

:

velocity (m/s)
4
3

C ... Pe=1MPa (100 m)
25001 —— Pe=10MPa (1km)
i .—. Pe=100MPa (10 km)
2000 1 \HHHi L \HHH% 1 \HHH% 1 \HHHi L \HHHi 1 \HHH% Ll
10° 100 10° 10° 10" 10° 10° 10
frequency (H2)

Figure 1. The attenuation and phase velocity of com-
pressional waves in the double-porosity model of Pride
and Berryman [2003a]. The thin lenses of phase 2 have
frame moduli (K$ and G2) modeled using the modified
Walton theory given in the appendix in which both KJ
and G2 vary strongly with the background effective pres-
sure P. (or overburden thickness). These lenses of porous
continuum 2 are embedded into a phase 1 continuum
modeled as a consolidated sandstone.

The complex inertia p corresponds to rewriting the relative
flow resistance as an effective inertial effect

= —n/[iwk(w)].

Taking the minus sign in equation (34) gives an s having
an imaginary part much smaller than the real part and that
thus corresponds to the normal P-wave. Taking the posi-
tive sign gives an s with real and imaginary parts of roughly
the same amplitude and that thus corresponds to the slow
P-wave (a pure fluid-pressure diffusion across the seismic
band of frequencies). We are only interested here in the
properties of the normal P-wave.

The P -wave phase velocity v, and the attenuation mea-

(39)

sure Qp are related to the complex slowness s as

vp = 1/Re{s}, (40)
Q' = Im{s*}/Re(s*). (41)
2.7. Numerical Examples

In figure 1, we give an example of Q, ! and v, as deter-
mined using the double-porosity theory. The example mod-
els a consolidated-sandstone phase 1 host that contains thin
lenses (squashed/oblate spheroids) of an uncemented gran-
ular phase 2 material. The drained properties of phase 2 are
determined using the modified Walton theory given in the
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Figure 2. A comparison of modeling the embedded

phase 2 as either penny-shaped lenses or spheres. All
curves have identical phase 1 and phase 2 material prop-
erties and identical phase 2 volume fractions v2 = 2%.
The only difference is the assumed shape of the phase
2 inclusion, which has a strong influence on the over-
all drained bulk modulus of the composite (the Hashin
and Shtrikman [1963] upper bound holds in the case of
spheres, while the lower bound holds in the case of penny-
shaped lenses).

appendix. In this way, the moduli K¢ and G2 are functions
of the background effective-stress level P.. The host phase
1 is modeled using ¢1 = 0.20 and ¢ = 2 in the model given
in the appendix. All mineral moduli are taken to be that of
quartz K, = 38 GPa and G = 44 GPa and the permeability
of the host phase is k&1 = 10 mD. The drained properties of
the composite were modeled using the Hashin and Shtrik-
man [1963] lower bounds given in equations (21)—(22). The
penny-shaped inclusion of phase 2 have the following geo-
metrical properties: a =3 cm, e = 1072, v2 =3 %, L, = 8.6
mm, and V/S = 5 mm. The specific shape of the attenua-
tion curve is highly sensitive to whether L; is greater than
or less than V/S. The invariant peak near 10° Hz is that due
to the Biot loss (fluid equilibration at the scale of the seis-
mic wavelength), while the broad main peak that changes
with the effective pressure P. is that due to mesoscopic-scale
equilibration. All dependence on P. in this example comes
from how K¢ and G» vary with P..

The level of attenuation in the double-porosity theory is
controlled by the factors that allow phase 2 to develop a
different fluid pressure response as compared to phase 1. In
figure 2, this is demonstrated by comparing phase 2 mod-
eled as spheres to phase 2 modeled as penny-shaped lenses.
Both examples have identically the same volume fractions
of phase 2 as well as phase 1 and 2 material properties.
The difference is that in the sphere model, the Hashin and
Shitrikman [1963] upper bound is used for K and G, while
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Figure 3. Attenuation arfd[&ﬁli.lﬁl’ﬂﬁyr(lpﬂ)licted by the
double-porosity model of Pride and Berryman [2003a]
(the solid curves) as compared to the data of Sams et
al. [1997] (rectangular boxes). The number of Q' es-
timates determined by Sams et al. [1997] falling within
each rectangular box are: 40 VSP, 69 crosswell, 854 sonic
log and 46 ultrasonic core measurements. A similar num-
ber of velocity measurements were made. These various
measurements come from different depth ranges at their
test site.

5 6

the lower bound is used in the penny-shaped lens model. A
compliant sphere of phase 2 is protected from an applied
compression by the rigidity of the phase 1 host that sur-
rounds it. Accordingly, not much fluid pressure difference is
created between the two phases and so there is only a small
amount of mesoscopic loss.

In modeling the penny-shaped inclusions in figure 2, we
have used the parameter values a = 3 cm (inclusion radius)
and € = 107! to obtain V/S =5 cm and L; = 0.9 cm. In
this case, V/S > L1 which has changed considerably the
look of the attenuation curve as compared to figure 1 where
V/S < Li. What is happening can be seen in the effective
moduli of equations (11)—(13). The principal relaxation in
the effective moduli occurs whenever w = 7/a;;. But there
is also a relaxation in y(w) when w = wy,. For situations
where V/S > L1, the effective moduli relax at a frequency
much less than w,, (with v(w) = v») and this is the case in
figure 2. When V/S < L, the relaxation in v(w) can begin
to occur prior to the principal relaxation as is seen in figure
1.

Finally, in figure 3, we compare the double-porosity model
to the data of Sams et al. [1997] who used different seismic
measurements (VSP, crosswell, sonic log, and ultrasonic lab)
to determine Q! and P-wave velocity over a wideband of
frequencies at their test site in England. The variance of the
measurements falling within each rectangular box are due to
the various rock layers present at this site. Data collection

10’
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was between four wells that are a few hundred meters deep.
The geology at the site is a sequence of layered limestones,
sandstones, siltstones and mudstones. We model phase 2 as
unconsolidated penny-shaped inclusions in which a = 5 cm
(inclusion radius), € = 6 x 1073, v2 = 1.2 %, k1 = 80 mD,
V/S = 1.25 cm, and L1 = 1.45 cm. The phase 1 host is
again taken to be a well-consolidated sandstone.

2.8. Discussion

The overall magnitude of attenuation in the double-
porosity model is dominantly controlled both by the contrast
of compressibilities between the two porous phases and the
assumed shape of the embedded phase. Certain assumed
shapes, such as spherical inclusions, allow the rigidity of the
host phase to protect even a very soft inclusion from being
compressed much and this results in minimal mesoscopic loss
for such a geometry. Less compact and more elongated or
even dendritic mesoscopic geometries are what potentially
allow the mesoscopic-loss to be important. However, even
in the presence of such structure, a strong contrast in the
drained properties of the two phases is also required in order
to generate a significant mesoscopic fluid-pressure gradient
and mesoscopic loss. A contrast in permeability alone would
generate no such mesoscopic-scale fluid pressure gradients.

The relaxation frequency at which the mesoscopic loss per
cycle is maximum is proportional to nki/L3. Far below this
relaxation frequency, Q! always increases linearly with fre-
quency as fn/ki. Thus, the permeability information in the
double-porosity attenuation is mainly in the frequency de-
pendence of Q71, not in the overall magnitude of Q~!, and
involves (most importantly) the permeability k1 of the host
phase, not the overall permeability of the composite (see
Berryman [1988] for a related discussion). If phase 2 is well
modeled as being small penny-shaped inclusions embedded
in phase 1, then k; is controlling the overall permeability. If
phase 2 corresponds to through going connected joints, then
although Q™' (w) contains information about k1, it does not
contain information about the overall permeability which is
being dominated by k2 in this case (i.e., k2 has no significant
influence on the mesoscopic-loss process).

In the case of through-going joints, the equilibration at
the scale of the wavelength (the Biot loss) has a chance of be-
ing shifted to lower frequencies. The only way to determine
the proper attenuation curve in this case is to solve the cubic
characteristic equation for s* [the characteristic equation is
obtained by inserting a plane-wave solution into the com-
plete double-porosity equations (6)—(10) as discussed ear-
lier].

3. Patchy-Saturation Model

Another important source of mesoscopic-scale hetero-
geneity having an important influence on seismic properties
is patchy fluid saturation [e.g., Knight et al., 1998]. All nat-
ural hydrological processes by which one fluid non-miscibly
invades a region initially occupied by another result in a
patchy distribution of the two fluids. The patch sizes are dis-
tributed across the entire range of mesoscopic length scales
and for many invasion scenarios are expected to be frac-
tal. As a compressional wave squeezes such a material, the
patches occupied by the less-compressible fluid will respond
with a greater fluid-pressure change than the patches oc-
cupied by the more-compressible fluid. The two fluids will
then equilibrate by the same type of mesoscopic flow already
modeled in the double-porosity model.

An analysis almost identical to that of Pride and Berry-
man [2003a,b] can be carried out that leads to the same ef-
fective poroelastic moduli given by equations (11)—(13) but
with different definitions of the a;; constants and internal
transport coefficient y(w). In the model, a single uniform
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porous frame is saturated by mesoscopic-scale patches of
fluid 1 and fluid 2. We define porous phase 1 to be those re-
gions (patches) occupied by the less mobile fluid and phase
2 the patches saturated by the more mobile fluid; i.e., by
definition 71 > 72. This most often (but not necessarily)
corresponds to K1 > Ko and, therefore, to B1 > Bs.

Johnson [2001] has treated this model using a differ-
ent coarse-graining argument while starting from the same
local physics (however, he assumes the porous material
is a Gassmann-style mono-mineral material). Our final
undrained bulk modulus is identical to the result of John-
son [2001] in the limits of high and low frequency and differs
only slightly in the transition range of frequencies where the
flow in either model is not explicitly treated.

3.1. Patchy-Saturation a;; Coefficients

To obtain the a;; for the patchy-saturation model, we
note that, by model assumption, each patch has the same «
and K. The poroelastic differences between patches is en-
tirely due to B being different than B2. Upon volume ayver-
aging equation (3) and using V-v = V- (v1u1) + V- (v212),
where an overline again denotes a volume average over the
appropriate phase, and using the fact that the a;; are de-
fined in the extreme high-frequency limit where the fluids
have no time to traverse the internal interface 02 (i.e.,
the a;; are defined under the condition that (in¢ = 0), one
has

V1~ V2 - V10 - V20x -

Vv = TPt T P2 + & Pn + K Pra (42)
Vi v -

V-a 7 Pt~ T Pro (43)

V-qg _ V2~ Va2 - (44)

71%2 - K—ngf2 :

The average confining pressures P,; in each phase are not
a priori known; however, they are necessarily linear func-
tions of the three independent applied pressures of the the-
ory Pe(= v1D.y + v2P.2), Ds1; and Py, It is straightforward
to demonstrate that, if and only if the average confining
pressures take the form

(45)
(46)

= nl+ ﬂﬁﬁ - ﬂﬁfm
v Pe — ﬂﬁﬁ + ﬂﬁfm

vlﬁcl

V2 ch =

then equations (42)—(44) will produce a;; that satisfy the
thermodynamic symmetry requirement of a;; = aj; [i.e.,
these a;; constants are all second derivatives of a strain-
energy function as demonstrated by Pride and Berryman,
2003a]. Upon placing equations (45) and (46) into equa-
tions (42)—(44), we then have

an = 1/K (47)
azz = (=B+wv1/B1)a/K (48)
ass = (=B +v2/B2)a/K (49)
a2 = —na/K (50)
a3 = —va/K (51)
a3 = fa/K, (52)

where (3 is the single constant remaining to be determined.

To obtain (3, we note that in the high-frequency limit,
each local patch of phase i is undrained and thus charac-
terized by an undrained bulk modulus K;' = K/(1 — aB;)
and a shear modulus G that is the same for all patches. In
this limit, the usual laws of elasticity (as opposed to those of
poroelasticity) govern the response of the composite. Note
that, even if the rock frame is spatially uniform, an exception
to uniform G can, in principle, occur if cracks are uniformly
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present. In this case, it is known (see Berryman et al. [2002])
that the shear modulus in the regions containing dry cracks
can be somewhat different from the shear modulus in the
regions containing wet cracks. In reality, however, all cracks
tend to be water wet in partially saturated rocks and it is
a physically reasonable approximation to assume that G is
the same for each phase even when cracks are present.

Under these precise conditions (elasticity of an isotropic
composite having uniform G and all heterogeneity confined
to the bulk modulus which in the present case corresponds
to K}'), we follow Johnson [2001] by invoking the theorem of
Hill [1963] which states that the overall undrained-unrelaxed
modulus of the composite Ky is given exactly by

1 o V1 + V2
Ky +4G/3 ~ K¢ +4G/3  K§ +4G/3°

(53)

In terms of the a;;, this same undrained-unrelaxed Hill mod-
ulus is given by

1 dps1 ops2
Ky —a11+a12<5PC)U+a13<6PC U7

where, upon using V - q; = 0 and ot = 0 in equation (8)
and then using (47)—(52), the undrained-unrelaxed pressure
ratios are

(54)

dpr1\ B —v1v2/ B>

( 0P, )U ~ B(vi/B1 +wv2/B2) —viva/(B1B2)’ (55)
dpr2\  _ B —viv2/B1

( 0P )U " B(vi/B1+v2/B2) —viv2/(B1B2)’ (56)

Thus, after some algebra, equation (54) yields the exact re-
sult

5= vlw(g n 2)[ a—(1—K/Kg)/(viB1 + v2B2)
By BiJ)la—(1-K/Kgu)(vi/B: +U2/B2)( 7)
57
with Kp given by equation (53). All the a;; are now ex-
pressed in terms of known quantities.

3.2. Patchy-Saturation Transport

Next we must address the internal fluid-pressure equili-
bration between the two phases with the goal of obtaining
the internal transfer coefficient v of equation (9). The math-
ematical definition of the rate of internal fluid transfer is

Cint = 15

n- Ql dS7
4 Q12

(58)

where V' is the volume occupied by the composite. A pos-
sible concern in the patchy-saturation analysis is whether
capillary effects at the local interface 012 separating the
two phases need to be considered.

3.2.1. Local continuity conditions on 9€21».

At the pore scale, the interface separating one fluid patch
from the next is a series of meniscii. Roughness on the grain
surfaces keeps the contact lines of these meniscii pinned to
the grain surfaces. Pride and Flekkoy [1999] argue that the
contact lines of an air-water meniscus will remain pinned
for fluid-pressure changes less than roughly 10* Pa, which
corresponds to the pressure range induced by linear seismic
waves. So as a wave passes, the meniscii will bulge and
change shape but will not migrate away. This makes the
problem much simpler to analyze.

One porous-continuum boundary condition is that all
fluid volume that locally enters the interface 012 from
one side, must exit the other side so that n- Q; = n- Q2
(= n- Q). Another boundary condition is that the differ-
ence in the rate at which energy is entering and leaving the
interface is entirely due to the work performed in chang-
ing the miniscii surface area. Before the wave arrives, each
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miniscus has a mean curvature H, fixed by the static fluid
pressures initially present; p}; — p%, = 0 H,, where o is the
surface tension. During wave passage, one can demonstrate
[Pride and Flekkoy, 1999] that the mean curvature changes
as H = H, + eH, + O(¢?), where H; is of the same order as
H,, and where € is a dimensionless number called the cap-
illary number. The capillary number is defined € = 7|Q| /0,
where |Q)| is some estimate of the wave-induced Darcy flux
and that is thus bounded by the wave strain times phase
velocity; i.e., |Q| < 107 m/s. For typical interfaces (like
air and water), we have o > 1072 Pa-m and n =~ 10 Pa-s.
For linear wave problems, ¢ < 10* and, thus, ¢ can be
considered a very small number.

By writing the fluid pressures as py; = p}; + dpy: and
using the fact that n - Q is continuous, the conservation of
energy at the interface may be expressed as

[0 {7 — (pf; +0psi)Q}] = on- QHo[1 + O(e)]. (59)

The brackets on the left-hand side denote the jump in en-
ergy flux across the interface, while the right-hand side rep-
resents the rate at which work is performed in stretching the
meniscii. Since conservation of momentum requires n - 7 to
be continuous at the interface and since the assumption of
the grains being welded together [or having an overburden
effective pressure (1 — ¢)(ps — ps)gh acting on them that is
greater than the wave stress| requires that u is continuous,
we find, to leading order in e, that
ops1 = opy2 (60)
along the interface 0€Q12. This means that the fluid
pressure equilibration can be modeled using the standard
displacement-stress continuity conditions along 0212 that
were also employed in the double-porosity analysis; i.e., cap-
illary effects can be neglected. In what follows, the fluid
pressures correspond to the changes induced by the wave
and so we cease to write the “§” explicitly in front of them.

3.2.2. Mesoscopic flow equations.

To obtain the transport law —iw(ine = v(w)(Ps1 — Pr2),
the mesoscopic flow is analyzed in the limits of low and
high frequencies. These limits are then connected using a
frequency function that respects causality constraints. The
linear fluid response inside the patchy composite due to a
seismic wave can always be resolved into two portions: (1) a
vectorial response due to macroscopic fluid-pressure gradi-
ents across an averaging volume that generate a macroscopic
Darcy flux q; across each phase and that corresponds to the
macroscopic conditions p;; = 0 and Vp,;, # 0; and (2) a
scalar response associated with internal fluid transfer and
that corresponds to the macroscopic conditions p,; # 0 and
VP;; = 0. The macroscopic isotropy of the composite guar-
antees that there is no cross-coupling between the vectorial
transport q; and the scalar transport (int within each sample
(“Curie’s principle” which is, in fact, a theorem; c.f., deGroot
and Mazur [1984]). )

The mesoscopic flow problem that defines (in¢ is the inter-
nal equilibration of fluid pressure between the patches when
a confining pressure AP has been applied to a sealed sam-
ple of the composite. Having the external surface sealed
is equivalent to the required macroscopic constraint that
VP;; = 0. Upon taking the divergence of (2) and using equa-
tion (3), the diffusion problem controling the mesoscopic
flow becomes

%Vzpﬁ + inLBipfi = iw%pci in Q, (61)
[psi] and [n-Vpp]=0 on Oy, (62)
n- foi =0 on 8Ei7



PRIDE ET AL.: WAVE-INDUCED FLOW LOSSES

where (2; is the region that each phase occupies within the
averaging volume, OF; is that portion of the external sur-
face of the averaging volume that is in contact with phase 4,
and the brackets in equation (62) again denote jumps across
the interface. One also needs to insert equations (3) and (4)
into (1) to obtain a second-order partial-differential equa-
tion for the displacements u;. In general, the local confining
pressures p.; are determined using
Pei = —KV -u; + apy;, (64)

once the displacements u; are known.

3.2.3. Low-frequency limit of vy(w).

As w — 0, we can represent the local fields as perturba-
tion expansions in the small parameter —iw

(65)
(66)

0 .
pri = p}) — iwp}) + O(w?),
0 . (1
pei = piy) —iwply) + O0(w?),
and equivalently for u;. The zeroth-order response corre-
sponds to uniform fluid pressure in the pores and is therefore
given by pg) = pg) = AP and
—(0
p;‘i) - B - ai2 +ais _ 1
AP ° v1/B1 4+ v2 /B2’

— 67
a22 + 2a23 + ass (67)

where the patchy-saturation a;; have been employed. The
fact that the quasi-static Skempton’s coefficient in the
patchy-saturation model is exactly the harmonic average
of the constituents B; is equivalent to saying that at low
frequencies, the fluid bulk modulus is given by 1/K; =
vi/Kf1 + v2/Ky2. The quasi-static response is thus com-
pletely independent of the spatial geometry of the fluid
patches; it depends only on the volume fractions occupied
by the patches.

The leading order correction to uniform fluid pressure is
then controlled by the boundary-value problem

Kk _2 () 72 < Bo) .
—V = = (1—=)AP in Qo 68
am pf2 m B2 2 ( )
Kk s () B, .
—V = (1-=]AP Q 69
am pfl B mn 1, ( )
Py = ply on 90, (70)
n- Vp;lz) = %n . Vpi}l) on 02, (71)
n- Vp}li) = 0 on JOE;. (72)

It is now assumed that for patchy-saturation cases of interest
(air/water or water/oil), the ratio n2/m can be considered
small. To leading order in 72/, equations (68), (71), and
(72) require that p&lz) (r) = ﬁ}lz) (a spatial constant). The
fluid pressure in phase 1 is now rewritten as

= a B,
R =5 - 22 (1- 5 ) armm, @)

where, from equations (69), (70) and (72) and to leading
order in 7n2/m1, the potential ®; is the solution of the same
elliptic boundary-value problem (28)—(30) given earlier.

Upon averaging (73) over all of Q1, the leading order in
—iw difference in the average fluid pressures can be written

- . =(1) _ =(1)
Pf1—Pf2:_iw Pyl — Dyo —jme 1_& 12
AP AP kK B )7
(74)

where L; is again the length defined by equation (27).
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. To connect this fluid-pressure difference to the increment
Cint, we use the divergence theorem and the no-flow bound-
ary condition on OF; to write equation (58) as

_ iw k (1) . « Bo
v /691211 Vp;; dS zwle (1 B1) AP.
(75)
Replacing AP with D, — P, using equation (74) then gives
the desired law —iwCint = Vp(Psy — Pyp) With

vk 72
= 1+0(—=]],
L { (771)}

being the low-frequency limit of interest.

3.2.4. High-frequency limit of v (w).

It has already been commented that in the extreme high-
frequency limit where each patch behaves as if it were sealed
to flow (Cint = 0), we assume here that, to a very good ap-
proximation, the theory of Hill [1963] applies. Hill’s work
demonstrates, among other things, that when each isotropic
patch has the same shear modulus, the volumetric defor-
mation within each patch is a spatial constant. The fluid
pressure response in this limit p?; is thus a uniform spa-
tial constant throughout each phase except in a vanishingly
small neighborhood of the interface 0212 where equilibra-
tion is attempting to take place. The small amount of fluid-
pressure penetration that is occuring across 0212 can be
locally modeled as a one-dimensional process normal to the
interface.

Using the coordinate x to measure linear distance normal
to the interface (and into phase 1), one has that equation
(61) is satisfied by [ Johnson, 2001]

(76)

pr = p]o;i + Olei\/iw/Dl z7 (77)
pr2 = p]oc% + Ozefi\/iw/Dl z7 (78)
where the diffusivities are defined D; = kK B;/(n;«). The

constants C; are found from the continuity conditions (62)
to be

—1 oo 00
S By Y AR "
n2B2/(m B1) 0o _ oo (80)

Cy = = /777232/(7]131)(pf1_pf )-

Although not actually needed here, we have that p7; =
Bipci, where the uniform confining pressure of each patch is
given by equations (45) and (46), so that the fluid pressure
difference between the phases goes as

B1 — B>
- 1—B(Bi/vi + Bz/v2)’ (81

P71 — PFa
AP

This equation is exactly the difference between equations
(55) and (56). Because the penetration distance /D;/w
vanishes at high-frequencies, we may state that to leading
order in the high-frequency limit, p;; — Do = p71 — pF2-

To obtain the high-frequency limit of t{qe transport coef-
ficient y(w), we use the definition (58) of the internal trans-
port (note that —n - Vpy = Ops1/0x)

iﬁ/ Ops1 ds
V7]1 Q12 (937

along with equations (77) and (79). The result is

83
)> (83)

—iu}Cint = (82)

ka/(mB1K)
n2Ba/(

3/2 S
w)~1 w—
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as w — oo. Here, S is again the area of 0212 contained
within a volume V of the patchy composite.

3.2.5. Full-model for vy(w).

The high- and low-frequency limits of v are then con-
nected by a simple frequency function to obtain the final

model
V(W) =1 V1 —iw/wp, (84)
where the transition frequency w, is defined
2
BiK k(v1V/S)? < /77sz>
= —— |1+ , 85
“r ma L} mbB1 (85)

and where v, = vik/(mL3). Equation (84) has just one
singularity (a branch point) at w = —iw,. Causality re-
quires that with an e~*“* time dependence, all singularities
and zeroes of a transport coefficient like y(w) must reside in
the lower-half complex w plane. Equation (84) satisfies this
physically important constraint.

3.3. Patchy-Saturation Modeling Choices

To use the patchy-saturation model, appropriate values
for the two geometric terms L; and V/S must be specified.
Immiscible fluid distributions in the earth have very compli-
cated geometries since they arise from slow flow that often
produces fractal patch distributions. In particular, analyti-
cal solutions of the boundary-value problem (28)—(30) that
defines L1 for such real-earth situations are impossible. Re-
call that L1 is a characteristic length of phase 1 (the phase
having the smaller fluid mobility k/n) that defines the dis-
tance over which the fluid-pressure gradient is defined during
the final stages of equilibration. For complicated geometries
it may either be numerically determined, treated as a target
parameter for a full-waveform inversion of seismic data, or
simply estimated qualitatively. In the numerical examples
that follow, we will assume (for convenience) that the indi-
vidual patches correspond to disconnected spheres for which
simple analytical results are available for L; and V/S.

If we consider phase 2 (porous continuum saturated by
the less viscous fluid) to be in the form of spheres of ra-
dius a embedded within each radius R sphere of the two-
phase composite, then vo = (a/R)*, V/S = avs/3, and
L = 9v;2/3a2/14[1 — 71;;/3/6]. This model is particu-
larly appropriate when vy < vi. Since the fluid 2 patches
are disconnected, the definitions (11)—(13) of the effective
poroelastic moduli again hold. Furthermore, fluid 2 may be
taken to be immobile relative to the framework of grains
in the wavelength-scale Biot equilibration, so that the in-
ertial properties of equations (34) and (35) are identified
as pr = psi, p = (1 — ¢)ps + ¢(vips1 + v2ps2), and
p= —m/(iwk).

In situations where it is more appropriate to treat fluid
1 (the more viscous fluid) as occuping disconnected patches
(e.g., when v1 < vy), the effective poroelastic moduli are
defined by interchanging 2 and 3 in the subscripts of equa-
tions (11)—(13). Again assuming the phase-1 patches to be
spheres of radius a embedded within radius R sphere of
the two-phase composite, we have that v; = (a/R)* and
V/S = av1/3. The elliptic boundary-value problem (28)—
(30) can be solved in this case to give L? = a*/15. Further-
more, the effective inertial coefficients in the Biot theory
are defined py = py2, p = (1 — ¢)ps + ¢(v1ps1 + v2pys2), and
5= —mp (iwh).

In situations where both phases form continuous paths
across each averaging volume, it is best to deter-
mine the attenuation and phase velocity by seeking the
plane longtitudinal-wave solution of non-reduced “double-
porosity” governing equations of the form (6)-(10). How-
ever, this approach is not pursued here. We conclude by
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Figure 4. The undrained bulk modulus Ky (w) in both
the patchy-saturation model presented in this article and
the model of Johnson [2001]. The top graph is Re{Ky}
while the bottom graph is Q' = —2Im{Ky}/Re{Kuv}.
The physical model is 10 cm spherical air pockets embed-
ded within a water-saturated region. The volume fraction
of gas saturated rock is 3% in this example. The prop-
erties of the rock correspond to a 100 mD consolidated
sandstone.

noting that, if the embedded fluid is fractally distributed,
the lengths L1 will remain finite while (V/S)/L1 — 0 as the
fractal surface area S becomes large (however, V/S never
reaches zero because the fractality has a small-scale cutoff
fixed by the grain size of the material).

3.4. Numerical Examples

In figure 4, we compare the Johnson [2001] prediction of
Ky to our own for a consolidated sandstone (frame prop-
erties as determined in the appendix with £ = 100 mD,
¢ = 10, ¢ = 0.20) in which phase 1 is saturated with wa-
ter and phase 2 is taken to be spherical regions saturated
with air. The two estimates have identical asymptotic de-
pendence in both the limits of high and low frequencies. In
the cross-over range, the physics is not precisely modeled in
either approach. However, even in the cross-over range, the
differences in the two models is slight.

Figure 5 gives the P-wave velocity and attenuation for a
model in which the frame properties correspond to k£ = 10
mD, ¢ = 15, and ¢ = 0.15. Phase 2 is saturated by air
and is taken to be isolated spheres of radius ¢ = 1 cm.
Phase 1 is saturated with water. The volume fraction v
occupied by these 1 cm spheres of gas is as shown in the fig-
ure. Even tiny amounts of gas saturation yield rather large
amounts of attenuation and dispersion; yet these predictions
are consistent with the magnitudes of observed attenuation
and dispersion in rocks.

4. Squirt-Flow Model

Laboratory samples of consolidated rock often have bro-
ken grain contacts and/or microcracks in the grains. Much
of this damage presumably occurs as the rock is brought
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Figure 5. The P-wave velocity and attenuation of
a sandstone saturated with water and containing small
spherical pockets of gas having radius 1 cm and occupy-
ing a fraction of the volume v, as shown.

from depth to the surface. Since diagenetic processes in a
sedimentary basin tend to cement microcracks and grain
contacts, it is uncertain whether in situ rocks have sig-
nificant numbers of open microcracks. Nonetheless, when
such grain-scale damage is present, as it always is in labo-
ratory rock samples at ambient pressures, the fluid-pressure
response in the microcracks will be greater than in the prin-
cipal porespace when the rock is compressed by a P-wave.
The resulting flow from crack to pore is called “squirt flow”
[e-g., Mavko and Nur, 1975].

In the squirt model of Dvorkin et al. [1995], the grains of
a porous material are themselves allowed to have porosity
in the form of microcracks. The effect of each broken grain
contact is taken as equivalent to a microcrack in a grain.
The number of such microcracks per grain is thus limited
by the coordination number of the packing and so the to-
tal porosity contribution coming from the grains is always
negligible compared to the porosity of the main porespace.

The grain space in the Dvorkin et al. [1995] model is
taken to be a spatially uniform porous continuum. These
authors provide an approximate analysis of their model in
which the terms that are left out of the bulk-modulus dis-
persion are as large as the dispersion itself. In the present
section, we use the double-porosity framework to analyze
the Dvorkin et al. [1995] squirt model with the goal of ob-
taining exact results at both low and high frequencies. As
in the previous two sections, our exact limits are approxi-
mately connected by a causal frequency function containing
a relaxation frequency appropriate for a grain space of arbi-
trary geometry.

Phase 1 is now defined to be the pure fluid within the
main porespace of a sample and is characterized elastically
by the single modulus Ky (fluid bulk modulus). Phase 2 is
taken to be the porous (i.e., cracked) grains and character-
ized by the poroelastic constants K§ (the drained modulus
of an isolated porous grain), as (the Biot-Willis constant
of an isolated grain), and B> (Skempton’s coefficient of an
isolated grain) as well as by a permeability k2. The over-
all composite of porous grains (phase 2) packed together

X-11

within the fluid (phase 1) has two distinct properties of its
own that must be specified; an overall drained modulus K,
and an overall permeability k associated with flow through
the main porespace. The volume fractions occupied by each
phase are again denoted v; where vi = ¢ is the porosity
associated with the main porespace.

The theoretical approach is to obtain again the average
fluid response in each of these two phases and then to make
an effective Biot theory by saying that the fluid within the
grains cannot communicate directly with the outside world,;
i.e., the fluid in the grains can only communicate with the
main pores. Equations (11)-(13) again define the effective
poroelastic moduli in the squirt model and we need only de-
termine the a;; constants and internal transport coefficient
~(w) that are appropriate to squirt.

4.1. Squirt a;; Coefficients

To obtain the a;; coefficients in the squirt model, we
first note that these coefficients are defined under conditions
where (ine = 0 (no fluid passing between the porous grains
and the principal pore space). Under these conditions, the
rate of fluid depletion V-q; of a sample (rate of fluid volume
being extruded from the principal pore space via the exterior
sample surface as normalized by the sample volume) is due
to the difference between the rate of dilatation of the prin-
cipal porespace (denoted here as ¢é1) and the rate at which
fluid in the pores is dilating —p;, /K. If we also perform a
volume average of equation (3) over the porous grain space
and use the notation that v2é2 = V - (v2u2) we obtain the
following three equations

-V.aq1 = v+ K —Dn (86)
V202 - V202 -
i v = — 87
q2 K2 Do + Bngpf2 (87)
. V2 - V2(x2 -
—U2€2 = K—gpcz - K—gpfz. (88)

The macroscopic dilatation of interest is V-v = vié1 +v2é2.
In order to obtain the macroscopic compressibility laws for
the porous-grain/principal-porespace composite, we intro-
duce linear response laws of the form

(89)
(90)

ﬁcQ = G,ch + a2ﬁf1 + aSﬁfQ
biPe + b2ﬁf1 + b3§f2

€1

where the a; and b; must be found. We note immediately
that from the definition P. = v1p 1t V2P, One has
0=(1—wai)P.— (91)

(v1 + v2a2)Djy — V203D,

which must hold true for any variation of the independent
pressure variables so that a1 = 1/v2, a2 = —v1/v2, a3 = 0.

To obtain the b; coefficients, we now combine the results
above into macroscopic laws

—V-v= [—v1b1+Kd]P

V202
- [Ule + Kd] Ppr— [vlbs + K3

—-V-q= v1b1Pc + [’01172 + —] ﬁﬂ + U1b3ﬁf2 (93)

} Bra (92)

K
V202 -

—Q2 r "UIOQ_
PC+ KdB pf27

Vo= —2
q2 K3 K3

Ppt (94)

and use the fact that the coefficients of the matrix must be
symmetric (a;; = aj;). With a1 = 1/K corresponding to
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the overall drained frame modulus of the composite (to be
independently specified), we obtain viby = —(1/K —1/K%),

vibs = 1/K — (1 + v1)/K$, and b3 = az/K$. The final a;;
coefficients are exactly

an = 1/K (95)
az = 1/K — (1 4v1)/K5 +v1/K; (96)

V202
= 97

0 = B (97)
a2 = —1/K +1/K§ (98)
a1z = —az/K3 (99)
agz3z = Uloég/Kg. (100)

Reasonable models for K and K¢ will be discussed shortly.

4.2. Squirt Transport

We next must obtain the coefficient y(w) in the meso-
scopic transport law —iwCint = v(w)(Pq ﬁfz). Again, the
approach is to first obtain the limiting behaviour at low and
high frequencies and then to connect the two limits by a
simple function.

The fluid response in phase 1 (the principal porespace) is
governed by the Navier-Stokes equation —Vps; +nV3vy =
—iwpysvi and the compressibility law KyV - vi = iwpy:
where v; is the local fluid velocity in the pores. Since for all
frequencies of interest we have that w < Kjy/n (note that
Ky/n ~ 10*2 s7* for liquids and 10" s™' for gases), the
fluid pressure in phase 1 is governed by the wave equation

Vips + w?

Pr
=0 101
Kfpfl ) ( 0 )

and, since the acoustic wavelength in the fluid is always
much greater than the grain sizes, the fluid pressure in the
principal porespace satisfies ps1(r) = D;; (a spatial con-
stant) at all frequencies.

The focus, then, is on determining the flow and fluid pres-
sure within the cracked grains (phase 2) that is governed by
the local porous-continuum laws Q2 = —(k2/1)Vpy2 and

a2
_V Pf2 +szdB zr.uK—gpcz7 (102)
where pes = —K$V -us+azp #2. This deformation and pres-

sure change is excited by applying a uniform normal stress
—APn to the surface of the averaging volume with the fluid
pressure satisfying the boundary conditions n - Vpsa(r) =0
on OF> and pya(r) = Py on 0.

4.2.1. Low-frequency limit of vy(w)

The fluid pressure and confining pressure in the grains
can again be developed as a power series in —iw [as in
equations (65)—(66)]. The zero-order response corresponds
to the static limit in which the fluid pressure is every-
where the same and given by p}OQ) =DPpn = B,AP with
B, = —(a12 + a13)/(a22 + 2a23 + a33) and with the a;; as
given by equations (95)—(100). The detailed result for B,
can be expressed

/K —(1-a2)/K§ 1 (1-as)
B, K K4
1 (1 —Oéz) (6% 1
+ v1 [Kf Kd :| +U2Kg |:B2 1] (103)

which reduces to the standard Gassmann expression given
in the appendix (with a total porosity given by vi + ¢2v2),
when B, and a» are themselves given by the Gassmann ex-
pressions. In this same zero-order limit, the undrained bulk
modulus is defined as 1/K{ = ai1 + (@12 + a13)Bo, which
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also reduces to the standard Gassmann expression, when B>
and oo are themselves given by Gassmann expressions.

The correction to uniform flow pressure that is leading
order in —iw is thus governed by the problem

a2 (0)

2 (1
vl = el (104)
n-Vpl) =0 on 0B, (105)
ply = 0 on 9. (106)

Here, p(o) is the local confining pressure in the grain space
in the static limit that can be written p(o)( ) = ﬁcg) +0P(r).
The average static confining pressure throughout the grains
is determined from equation (84) with P. = AP and ps, =
pfr1 = BoAP to yield

—0) _ (1—unBo)

P2 = AP.

- (107)

The deviations dP(r) thus integrate by volume to zero
0P = 0 and are formally defined

1— (v + vzaz)Bo)AP B K_éiv @ (r),
V2 Qa2
(108)

The local perturbations 6 P(r) are thus highly sensitive to
the detailed nature of the grain packing and grain geometry.
Fortunately, the details of these perturbations do not play
an important role in the theory.

The fluid pressure in the grains is now written in the
scaled form

SP(r) = — <

naz(l — v1B,)

Pl (r) = —WAP ®(r), (109)

where the potential ®(r) is independent of AP and is a so-
lution of the elliptic problem

2 _ 4 w2 0P(r)
Vo(r) = -1 1w B AP (110)
n-V® = 0 on JE,, (111)
d = 0 on 8912. (112)

To leading order in —iw, an average of equation (109) gives

Py —Ppa = WPy +O) (113)
. naz(l —v1B) ;2 2
= w2 1) 114
iw ook K L;AP + O(w?), (114)
where the squared length L3 is defined
L3=3=9 va__ ®.0P (115)

1+ ———=
1-— leo (I)OAP

with overbars denoting volume averages over the grain space
and with the potential ®, defined as the solution of

Vo, = —1, (116)
n-V®, = 0 on 0Es, (117)
(130 = 0 on 8@12. (118)

Although it is not generally true that ®,0P = 0 for all grain
geometries, we nevertheless expect this integral to be small
in general because ®, is a smooth function and P = 0. The
local perturbations in the static confining pressure § P(r) re-
quire a solution of the static displacements throughout the
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entire grain space—a daunting numerical task. Whenever
the length L2 needs to be estimated, such as in the numer-
ical results that follow, our approach is simply to use the
reasonable approximation that L2 =9,.

Finally, from the definition (in¢ of the internal transfer we
have that to leading order in —iw

. iwkz/ (1)
—iw(int = n-Vp (119)
Vn 012 2
—iwkg/ 2 (1) . a2 _(0)
= Vpi, = —iw—=v2D, 120
Vn Qy f2 Kéi 2 ( )
vaka ,_ _
= —nLE (Pf1 Pf2) (121)

The normal n in equation (119) is outward to phase 1 which
accounts for the sign change in equation(120). Note as well
that equation (120) is a volume average of equation (104)
while equation (121) follows from equations (107) and (114).
The desired result is thus lim, o y(w) = ysq = v2k2/(nL3).

4.2.2. High-frequency limit of v (w).

In the extreme high-frequency limit, the fluid has no time
to escape in significant amounts from the porous grains
(phase 2) and enter the main pore space (phase 1). As such,
the fluid pressure distribution in each phase is reasonably
modeled as

BAP, (122)
BPAP + CoApe= i *Vw/Dazx (123)

pri(r) =
pra(r) =

where x is again a local coordinate measuring distance
normal to the interface 0212, and where D- is the fluid-
pressure diffusivity within the porous grains that is given
by Dy = szng/(nozz). In reality, the local confining pres-
sure pc2(r) throughout the grains has spatial fluctuations
about the average value and we have made the approxima-
tion that the average fluid pressure throughout the grain
space is Bapea(r) &= B5°AP. It is easy to demonstrate that
under undrained and unrelaxed conditions,
Bx = a13a23 —1133;1127
a22G33 — G353
12023 — A22013

(124)

B = (125)

2
22033 — A3

However, since these B;° do not appear in the final result,
they will not be algebraically developed.

The continuity of fluid pressure py2 = py1 along 0o
(z = 0) requires that C> = Bf® — B5°. The definition of (int
may now be used to write

) 1 ko Op2
—iwCing = — it el 126
¢ V Joa, M oz (126)
k2 .3/2 w S o oo

= —= — — (B — B®)AP 12

2 | B (BE = BEY) (127)
koca S

_ ;3/2 202 O 12

2 \/0_1 nBng V(Pf1 sz)v (128)

where we have used, to leading order in the high-frequency
limit, that D, — Dy = (B° — B3°)AP. The desired result

is then
(w) E —iwkz (6 %)
v v\ nB.Kd

(129)

as w — OQ.

4.2.3. Full model for vy(w).
The high- and low-frequency limits are again causally con-
nected via the simple function

w
(W) =Ysqy 1 — —, (130)
Wsq
but now the parameters are defined as
ngg
g = —ots 131
Vsq UL% (131)
B2K§ ky (w2V/S 2
o = = . 132
Wsa no2 L% L2 ( 3 )

4.3. Squirt-Flow Modeling Choices

To make numerical predictions of attenuation and dis-
persion, models must be proposed for the phase 2 (porous
grain) parameters.

If the grains are modeled as spheres of radius R, the
fluid-pressure gradient length within the grains can be esti-
mated as Lx = R/v/15 and the volume to surface ratio as
V/S = R/(3v2). The grain porosity is assumed to be in the
form of microcracks and so it is natural to define an effective
aperture h for these cracks. If the cracks have an average
effective radius of R/Nr (where Ng is roughly 2 or 3), and
if there are on average N, cracks per grain (where N, is also
roughly 2 or 3), then the permeability and porosity of the
grains are reasonably modeled as

3N, h )
= ki ks = poh?/12
ANZR and k= $2h”/12,

b2

(133)

where ¢ is the fracture porosity within the porous grains.
The dimensionless parameters k2/L3 and (v2V/S)/La re-
quired in the expressions for vs4 and wsq are now given by

k2 15N, <h>3 and (UQV/S>2 I

L2 16N \ R Lo 3
The normalized fracture aperture h/R is the key parameter
in the squirt model.

The drained grain modulus K§ is necessarily a function
of the crack porosity ¢» (and therefore h/R). Real crack
surfaces have micron (and smaller) scale asperities present
upon them. If effective stress is applied in order to make the
normalized aperture h/R smaller (so that, for example, the
peak in squirt attenuation lies in the seismic band), new con-
tacts are created that make the crack stronger. In the limit
as h/R — 0 (large effective stress), the cracks are no longer
present and K¢ — K, where K, is the mineral modulus of
the grain.

Many models for such stiffening could be proposed. We
intentionally make a conservative estimate here in proposing
a simple linear porosity dependence K§ = K(1—o¢z) where
o is a fixed constant determined from fitting ultrasonic at-
tenuation data. Effective medium theories (see, for example,
Berryman et al. [2002]) predict that o should be inversely
proportional to the aspect ratios of the cracks present. As
a crack closes and asperities are brought into contact, there
is naturally a decrease in ¢z but there should also be a de-
crease in o due to the fact that the remaining crack porosity
becomes more equant as new asperities come into contact.
Taking o to be constant as crack porosity decreases is thus a
minimalist estimate for how the drained modulus increases.

(134)
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Figure 6. The squirt-flow model of P-wave attenuation
when the grains are modeled as being spherical with ra-
dius R and containing microcracks having effective aper-
tures h. The overall drained modulus of the rock corre-
sponds to a consolidated sandstone.

Thus, the porous-grain elastic properties are taken to be

K = K.(1—o¢) (135)
az = 1-K§/K, (136)
1 K¢ (1-K;/Ks

- =1 (-1l = 1
B, TR, (1 - K$/K, )’ (137)

where we have used the Gassmann fluid-substitution rela-
tions for as and B». The overall drained modulus K of
the collection of porous (cracked) grains can be modeled for
example as

K. g (1 — 1)1)

1+ cn

which is the same drained-modulus model as given in the
appendix but with the solid grain modulus K replaced by
the cracked grain modulus K¥.

K= 7 (138)

4.4. Numerical Examples

In figure 6, we plot the P-wave attenuation predicted us-
ing the above model when the overall grain packing corre-
sponds to a consolidated sandstone (v; = 0.2 and ¢ = 5)
having a permeability of 10 mD. For the grain properties,
we take o = 0.8/(5 x 107%), 3N./(4N%) =1, and K, = 38
GPa (quartz) as fixed constants. This o value was chosen
so that there would be a significant peak in attenuation at
ultrasonic frequencies and is taken to be the same for all
values of h/R. The various curves can be thought of as be-
ing due to the application of effective stress. The peak in
Q™' near 1 MHz that is invariant to h/R is the one due to
the macroscopic Biot loss (fluid pressure equilibration at the
scale of the wavelength). The peak that shifts with h/R is
the one due to the squirt flow.

This figure indicates that, although the squirt mechanism
is probably operative and perhaps even dominant at ultra-
sonic frequencies, it does not seem to be involved in explain-
ing the observed levels of intrinsic attenuation in exploration
work. For real cracks inside of real grains, the o value will
diminish with effective stress (i.e., with h/R), so that the
effects of squirt in the seismic band are likely to be even less
than shown in figure 6.
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Figure 7. The dispersion in the real parts of the drained
bulk modulus Kp(w) [top graph], the undrained bulk
modulus Ky (w) [middle graph], and Skempton’s coeffi-
cient B(w) [bottom graph], as determined both in the
present study and by Dvorkin et al. [1995]. The plots
were all generated with /R = 5 x 10~®. Both theories
use identically the same input parameters and are treat-
ing identically the same model. The present study may
be considered exact in both the low and high frequency
limits of the model.

We next introduce the grain parameters ko, ¢2, and K as
modeled here along with the same overall drained modulus
K into the equations of Dvorkin et al. [1995] and compare
their results to our own when h/R = 5 x 107° (figure 7).
Dvorkin et al. [1995] have made a series of approximations
in their analysis [starting with equation (3) in their paper]
in which the error introduced is often as large as the disper-
sion being modeled. Figure 7 quantifies this error since our
analysis of their model, at least in the limits of both low and
high frequencies, is exact.

5. Conclusions

Models for three different P-wave attenuation mecha-
nisms were derived using a single theoretical framework.
The resulting models differ only in the values of the a;; con-
stants and in the values of the parameters contributing to
the mesoscopic-transport coefficient «y(w). These three mod-
els correspond to (1) mesoscopic-scale heterogeneity in the
frame moduli or “double porosity”, (2) mesoscopic-scale het-
erogeneity in the fluid type or “patchy-saturation”, and (3)
grain-scale heterogeneity due to microcracks in the grains
or “squirt”. In all three models, the amount of attenuation
is controlled principally by the contrast of elastic compress-
ibility among the constituents along with the assumed meso-
scopic geometry. In the double-porosity model, it is neces-
sary that the embedded phase have an elongated or squashed
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form and that the contrast between the frame bulk-modulus
of the two porous phases is strong in order for the mesoscopic
loss to be significant. In the patchy-saturation model, the
contrast in the fluid bulk modulus must be strong (immisci-
ble patches of different fluids that have nearly identical bulk
moduli would not produce much attenuation), while in the
squirt model, it is the contrast between the drained modulus
of an isolated cracked grain and that of the entire packing
of grains that controls the amount of attenuation.

Putting in thin lenses of unconsolidated sand grains into
an otherwise consolidated sandstone can produce attenua-
tion in the seismic band that is comparable to what is mea-
sured in the field even when the embedded phase represents
only a small amount of the total volume (< 1% volume frac-
tions). Such a model might correspond to a jointed sand-
stone. Since mesoscopic-scale heterogeneity is rather ubiqg-
uitous throughout the earth’s crust, it seems reasonable to
suppose that this mechanism may be responsible for most of
the attenuation observed in seismograms. The squirt mech-
anism produces a great deal of attenuation at the ultrasonic
frequencies used in laboratory measurements, but has trou-
ble explaining attenuation in the seismic band. This result
is important for some applications of the theory because
the rate at which the mesoscopic-scale fluid-pressure equili-
brates is a strong function of the permeability of the porous
material. The rate at which microcracks equilibrate with
the main pores in squirt flow is not permeability dependent.
This leaves open the possibility of extracting permeability
information from the frequency dependence of seismically
measured Q.

Appendix A: Constituent Properties

In order to use the unified double-porosity framework of
the present paper, it is conveninet to have models for the
various porous-continuum constituent properties.

For unconsolidated sands and soils, the frame moduli
(drained bulk modulus K and shear modulus G) are well
modeled using the following variant of the Walton [1987]
theory [c.f., Pride, 2003 for details]

a_ 1[40 =6o)n2P 1" (Pe/Po)
K= 6[ T2 } {1+[16Pe/(9Po)]4}”24’(A1)
G = 3K"/5, (A2)

where P. is the effective overburden pressure [e.g., P. =
(1 —&)(ps — ps)gh, where g is gravity and h is overburden
thickness] and where P, is the effective pressure at which
all grain-to-grain contacts are established. For P. < P,, the
coordination number n (average number of grain contacts
per grain) is increasing as (P./P,)'/2. For P. > P,, the
coordination number remains constant n = n,. The param-
eter P, is commonly on the order of 10 MPa. As P, — 0,
the Walton [1987] result is obtained (all contacts in place
starting from P. = 0). The porosity of the grain pack is ¢,
and the compliance parameter C; is defined

1 1 1
s (GS +KS—|—GS/3)’ (A3)
where K; and G5 are the mineral moduli of the grains. For
unimodal grain-size distributions and random grain packs,
one typically has 0.32 < ¢, < 0.36 and 8 < n, < 11.

For consolidated sandstones, the frame moduli are mod-
elled in the present paper as (c.f., Pride [2003] for details)

d _ 1-¢
K= Ksl—|—ccz$7
_1-9
14 3co/2

(A4)

G =G (A5)
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The consolidation parameter c represents the degree of con-
solidation between the grains and lies in the approximate
range 2 < ¢ < 20 for sandstones. If it is necessary to use a ¢
greater than say 20 or 30, then it is probably better to use
the modified-Walton theory.

The undrained moduli K* and B are conveniently and ex-
actly modeled using the Gassmann [1951] theory whenever
the grains are isotropic and composed of a single mineral.
The results are

B 1/K% - 1/K,
B = 1/K*—1/Ks + ¢(1/Ky — 1/Ks)’ (A6)
K = K* (A7)

1-B(l- KiK.’

from which the Biot-Willis constant o may be determined
to be a = 1 — K%/K,. These Gassmann results are often
called the “fluid-substitution” formulas.

The dynamic permeability k(w) as modeled by Johnson
et al. [1987] is

(A8)

where the relaxation frequency w., which controls the fre-
quency at which viscous-boundary layers first develop, is
given by

n
= , A
YT orFk, (49)

Here, F' is exactly the electrical formation factor when
grain-surface electrical conduction is not important and is
conveniently (though crudely) modeled using Archie’s law
F = ¢~™ [Archie, 1942]. The cementation exponent m is
related to the distribution of grain shapes (or pore topology)
in the sample and is generally close to 3/2 in clean sands,
close to 2 in shaly sands, and close to 1 in rocks having frac-
ture porosity (indeed, a reasonable model is m = 3/2+41/c).
The parameter n s is, for convenience, taken to be 8 (cylinder
model of the porespace).
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