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1 Introduction

A. G. Ivanov discovered in 1939 that the propagation of elastic waves in the surface layers of
the soil is accompanied by an “electrification” of the latter or, more exactly, by the appearance
of electric potential differences between points situated at different distances from the source
of the waves.1 This phenomenon has been denoted by him as a “seismoelectric effect of the
second kind” or “E-effect”, in order to distinguish it from the effect of the first kind (J- effect),
discovered previously by Blau and Statham,2 which consists in a variation of the strength of the
current J , flowing through the soil in the presence of a constant potential difference between
two electrodes under the influence of the elastic vibrations. The J-effect is due to a variation
of the electric resistance of the soil under the influence of elastic vibrations and is, therefore,
non-polar. According to A. Ivanov, the E-effect can be reduced to the electrofiltration effect
in the disperse medium, which ordinary moist soil constitutes. The particles of the latter
are immersed in water which plays the role of the dispersive medium. The boundary surface
between these particles and the water is the seat of electric double layers, whose aqueous side
has a diffuse structure. The presence of such layers explains the connection between the flow
of water in the capillary spaces of the soil and the transfer of surface electrical charges which
gives rise to an electrical field, in which case electrical currents are compensated by the volume
conduction currents. According to the theory of Helmholtz and Smoluchovski2 the differences
of hydrostatic pressure ∆p between two points of the soil must be connected with a difference
of the electrical potential

∆V =
εζ

4πµσ
∆p (1)

where ζ is the electrokinetic potential, i.e. the potential drop in the surface double layer, µ the
viscosity of water and σ its electrical conductivity. Since the propagation of longitudinal elastic
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waves in the soil is accompanied by the variation of pressure in the direction of propagation, it
must also be accompanied by a variation of the electric potential which constitutes the E-effect
discovered by Ivanov. Its magnitude is of the order of 1 mV/m which is somewhat smaller than
the theoretical value obtained from formula (1) for clay soils, and by a factor some tenths times
smaller than the corresponding value for limestones.

According to Ivanov’s experiments, the electrode situated closer to the explosion acquires at
the initial instant of the transition of the elastic wave a negative potential with respect to the
more distant electrode. This circumstance shows that the particles of the soil have a positive
charge while the adherent water layers–a negative one, in accordance with the results of direct
measurements of soil suspensions.

Although Ivanov’s considerations are thus essentially correct, a quantitative theory of his
“E-effect” can only be developed on the basis of the Helmholtz- Smoluchovski theory of filtration
potentials by taking into account the following complications.

1. Equation (1) refers to the case of a steady flow of water through the pores; in the case
of rapid vibrations account must be taken of the relaxation time, i.e. of the fact that the
conduction current, due to the potential drop ∆V which compensates the surface current
giving rise to this potential drop, is established within a finite lapse of time.

2. Equation (1) derived for the case of absolutely rigid filter with invariable pores, whereas
the propagation of longitudinal elastic waves in the soil is connected with a periodical
compression and expansion both of the particles, constituting it, and of the pores between
them, as well as of the liquid filling these pores.

3. The electrical oscillations, due to the mechanical vibrations of the soil, in connection with
the relative motion of its particles and of the dispersive medium and with the presence
of charges of opposite signs must, in their turn, react on these mechanical vibrations and
modify their propagation.

The second point is of special interest, apart from its connection with the filtration poten-
tials. The modern theory of the motion of the water in the soil based on Darcy’s law does
not take into account the fact that the particles of the soil can be elastically compressed and
extended, assuming that the external forces and the hydrostatic pressure act on the liquid filling
these pores only. This simplifying assumption necessitates a correction even in the case of prob-
lems on the steady flow of soil water under the influence of given external forces. It becomes,
however, wholly untenable in the case of such questions as the propagation of elastic vibrations
in the soil. It should be noted in this connection that the velocity of sound in the soil is usually
less than 1 km/sec, whereas in deeper layers of the earth, which are practically non-porous and
dry it reaches 6-8 km/sec. As far as I am aware, this fact has not been subjected so far to a
theoretical analysis.
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In the present paper we shall investigate this question and apply the results to a quantitative
determination of the electric effect associated with the propagation of elastic vibrations.

2 Statics of Dry Soil

The soil, as a two-phase system, is characterized, from the point of view of its elastic properties,
by a partial independence of its two components–the solid and the liquid one–from each other.

Let us assume, to begin with, that the liquid phase is wholly absent, the space formed by
the pores remaining empty. The elastic properties of the soil can be described in this case
from the macroscopic point of view by the ordinary equations of the elasticity theory of a solid
amorphous body, namely:

Tik = δik L θ + 2Guik (2)

where Tik (i, k = 1, 2, 3) are the components of the elastic strain tensor, δik = 1, for i = k and
δik = 0 for i 6= k; the quantities

uik =
1

2

µ
∂ui
∂xk

+
∂uk
∂xi

¶
are the components of the strain tensor (u1, u2, u3 are components of the displacement of a
particle with the coordinates x1, x2, x3), θ = div u = Σ∂ui/∂xi is the relative change of the
effective volume of the dry soil. Finally, L and G are Lamé’s coefficients, specifying the dry
soil, i.e. a soil with empty pores. From equations (2) there follow the well known expressions
for the components of the elastic force acting on an unit volume of the soil

Φ
(1)
i =

X
k

∂Tik
∂xk

= L
∂θ

∂xi
+G

X
k

∂2ui
∂x2k

+G
∂

∂xi

X
k

∂uk
∂xk

(3)

or, in vector form
~Φ(1) = (L+G)∇θ +G∇2u

In the macroscopic theory of the soil only such distances are considered, which are large com-
pared with the linear dimensions of the solid particles or of the pores, and such elements of
volume, which contain a very large number of these particles and pores. The presence and the
degree of porosity is accounted for with the help of a certain coefficient f equal to the ratio of
the volume of pores V2 to the total (macroscopical) volume, occupied by the soil V1 + V2 = V ;
V1 is here the volume actually filled by the solid particles constituting it. The actual density of
these particles will be denoted by ρ1 and the mean (macroscopical) density of the dry soil by
γ1. Referring the volumes V1 and V1 + V2 to unit mass, we have

ρ1 =
1

V1
, γ1 =

1

V1 + V2
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and, consequently,

γ1 = ρ1
V1

V1 + V2
= ρ1

µ
1− V2

V1 + V2

¶
i.e., according to the definition of f

γ1 = ρ1(1− f) (4)

The change of the specific volume of the soil ∆V consists of two parts: of the change of the
volume of unit mass of the solid phase ∆V1 and of the change of the volume of the pores,
connected with it, ∆V2. In the case of small strains which are dealt with in the elasticity
theory, these quantities can be treated as proportional to each other, so that

∆V1 = α∆V2 (5)

where α is a proportionality coefficient, which along with the porosity f specifies the mechanical
properties of the dry soil. With the help of this parameter it is possible to express the variation
of the degree of porosity of the soil due to its deformation. We have namely, according to the
definition of f :

∆f =
∆V2

(V1 + V2)
− V2 (∆V1 +∆V2)

(V1 + V2)
2 =

V1∆V2 − V2∆V1
(V1 + V2)

2

i.e.
∆f

f
=

V1
V2
∆V2 −∆V1
V1 + V2

=
V1
V2
− α

V1 + V2
∆V2

or since

V1
V2

=
V1 + V2
V2

− 1 = 1

f
− 1 = 1− f

f

∆f =
1− f(1 + α)

V1 + V2
∆V2

On the other hand, according to the definition of the quantity θ, we have

θ =
∆V

V
=
∆V1 +∆V2
V1 + V2

=
(1 + α)∆V2
V1 + V2

We thus get the following relation between ∆f and θ:

∆f =
1− f(1 + α)

1 + α
θ (6)

In the case of a large porosity the coefficient α must be small compared with unity, so that the
compression or expansion of the soil is realized mainly at the cost of a compression or expansion
of its pores. With the decrease of porosity α must increase; it is natural, however to assume

4



that for all values of f different from zero, the product f(1 + α) must be smaller than unity,
i.e. α < (1/f)− 1.

The forces, acting on a solid body and characterized by the tensor Tik, can be divided into
a pressure p1 = −(1/3)(T11 + T22 + T33) and a shearing stress, specified by the tensor

T 0ik = Tik − δik
1

3

X
i

Tii = Tik + δik p1

In the absence of shearing stresses the deformation of the body is reduced to a simple expansion
or compression, the pressure being defined by the formula:

−p1 = Lθ + 2
3
G(u11 + u22 + u33) =

µ
L+

2

3
G

¶
θ

which follows from equation (2) in connection with the definition of θ. We thus get

θ = − 1
K
p1 (7)

where K = L+ (2/3)G is the compressibility modulus, and, consequently, according to (6)

∆f = −1− f(1 + α)

(1 + α)K
p1 (8)

Hence it is clear that, under the condition α < (1/f)− 1, the compression of the dry soil must
be accompanied by a decrease of its porosity, whereas in the case α > (1/f) − 1 the contrary
would be true. We shall also need in the sequel the relations

uik = δik σ p1 + τ Tik (9)

which are obtained by solving equations (2) with respect to the quantities uik, the coefficients
σ and τ being defined by the formulae

σ =
L+ 4

3G

2G(L+ 2G)
, τ =

1

2G
(9a)

The absence of shearing stresses is characterized by the equations T11 = T22 = T33 = −p1 and
T12 = T23 = T31 = 0, formula (9) reducing in this case to (7).

3 Statics of Moist Soil

We have considered hitherto a completely dry soil. Let us now assume that all its pores are
wholly filled with a liquid (water) which can flow in and out of them freely. What will be the
influence of the liquid phase under such conditions on the macroscopic elastic properties of the
soil?
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In order to remain in equilibrium the liquid phase must, in the absence of external forces,
be subjected to the same hydrostatic pressure p2 at all the points of the (multiply connected)
space formed by the pores. This pressure must also be exerted on the solid skeleton of the soil.
The resulting deformation of this skeleton must reduce to a variation of the volume of the solid
phase in the same ratio as that of the liquid phase, according to the formula:

∆V1
V1

=
∆V2
V2

= − 1

Ko
p2

where Ko is the true compressibility modulus of the solid phase. Hence it follows, firstly, that
the whole (macroscopic) volume of the soil must be varied in the same ratio

∆V

V
= θ = − 1

Ko
p2 (10)

and, secondly, that the degree of porosity must remain unaltered

∆f = 0 (11)

A comparison of equations (7) and (10) shows that the hydrostatic pressure p2 is equivalent,
with respect to the compression of the soil produced by it, to a “solid pressure”:

p1 =
K

Ko
p2

which is smaller than p2 since Ko > K.
Equation (10) must be completed by one more equation

∆ρ2
ρ2

=
1

K2
p2 (12)

which connects the true density of the liquid with the hydrostatic pressure (K2 is the com-
pressibility modulus of the liquid) and which represents the approximate form of the equation
of state of the liquid at a constant temperature.

It must be kept in mind that the mass of the liquid ρ2V2 filling the pores in a certain part
of the solid skeleton V1 is, generally speaking, a variable quantity, in contradiction to the solid
part ρ1V1 which, of course, remains constant. The pressure p1 and p2 are wholly different with
respect to their origin and nature and completely independent of each other. The total variation
of the macroscopic volume of the soil, due to their combined action, is obviously equal to the
sum of the variations, due to each of them taken separately. We thus get, adding the expression
(7) and (10)

θ = − 1
K
p1 − 1

Ko
p2 (13)

This formula refers to the particular case of the absence of shearing stresses in the solid skeleton
of the soil. Inasmuch as such stresses are absent in a (resting) liquid the strain tensor of the soil

6



is reduced, in the general case, to a sum of the expressions (9) and of the tensor −(1/3Ko)p2δik.
Consequently, we have

uik = δik

µ
σ p1 − 1

3Ko
p2

¶
+ τ Tik (14)

These equations along with equations (12) determine the deformations of the solid and liquid
phases as functions of the stresses. In order to derive the equations for the motion of the soil
the stresses must be expressed as functions of the deformation (strain). Denoting ∆ρ2/ρ2 by ϕ
(ϕ plays for the liquid phase the same role as θ for the solid one) and replacing p2 according to
(12), by −K2ϕ we can rewrite equations (14) in the form

uik − δik
K2
3Ko

ϕ = δik σ p1 + τ Tik

Comparing with them (9) we see that, with regard to the hydrostatic pressure, the stress tensor
in the solid skeleton Tik must be expressed through the quantities uik − δik(K2/3Ko)ϕ in the
same way, as it is expressed through uik when ϕ = 0. Noting that θ =

P
i
uii is replaced in

this case by θ = (K2/Ko)ϕ, and modifying equations (2) in the way indicated, we obtain the
following generalized expressions for Tik:

Tik = δik

µ
L θ − K2

Ko
ϕ

¶
+ 2G

µ
uik − δik

K2
3Ko

ϕ

¶
or, since L+ (2/3)G = K,

Tik = δik

µ
L θ − KK2

Ko
ϕ

¶
+ 2Guik (15)

These expressions along with the equation of state of the liquid phase

p2 = −K2ϕ 15a

enable one to determine the volume elastic forces acting on the soil in that case when the
quantities Tik and p2 vary from one point to another. In the ordinary elasticity theory the
components of the elastic force, referred to a unit volume of the body, are given by the formulae

Φ
(1)
i =

X
k

∂Tik
∂xk

In our case this expression refers only to the solid phase, contained in a unit volume of the
soil. In the presence of a hydrostatical pressure a unit volume of the soil is also acted upon by
the force −∇p2 which is distributed between the liquid and the solid phase in the ratio of the
respective volumes, i.e. in the ratio f/(1− f). The complete expression for Φ(1)i has thus the
following form

Φ
(1)
i =

X
k

∂Tik
∂xk

− (1− f)∂p2
∂xi

(16)
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whereas the force acting on the liquid phase in a unit volume of the soil is equal to

~Φ(2) = −f ∇p2 (16a)

Substituting into these formulae the expressions (15) and (15a) we get

Φ
(1)
i =

∂

∂xi

µ
L θ − KK2

Ko
ϕ

¶
+G

ÃX
k

∂2ui
∂x2k

+
∂

∂xi

X
k

∂uk
∂xk

!
+ (1− f)K2 ∂ϕ

∂xi

=
∂

∂xi

·
(L+G) θ − KK2

Ko
ϕ

¸
+G

X
k

∂2ui
∂x2k

+ (1− f)K2 ∂ϕ
∂xi

or in a vector form

~Φ(1) = (L+G)∇θ +G∇2u+K2
µ
1− f − K

Ko

¶
∇ϕ (17)

and
~Φ(2) = fK2∇ϕ (17a)

4 The Equations of Motion of the Soil with Account of the
Friction between the Solid and the Liquid Phases

In modern agrophysics and hydrology the mean velocity of the flow of the liquid phase (water,
oil, etc.), filing the pores between the particles of the soil, on the assumption of the absolute
rigidity of the solid skeleton formed by these particles, is determined by Darcy’s equation

v2 =
k

µ
(−∇p2 +F2) (18)

where F2 denotes the external force acting on the liquid contained in a unit volume of the soil,
µ the viscosity coefficient of this liquid and k the filtration coefficient of the soil. The latter is
proportional to the degree of its porosity f and to the mean value of the cross section of the
pores, i.e. to the square of their linear dimensions δ

k = const · f δ2 (19)

Equation (18) must be completed, just as in ordinary hydrodynamics, by the continuity equation

∂γ2
∂t

+ div (γ2 v2) = 0 (20)

where γ2 = fρ2 is the mean density of the liquid in a macroscopically small region, containing,
however, a large number of pores. Some authors replace γ2 in the second term of the left-hand
side by ρ2 writing the continuity equation in the form

f
∂ρ2
∂t

+ div (ρ2 v2) = 0 (20a)

8



It can easily be seen, however, that in this form it contradicts the law of conservation of the
mass of the liquid, in connection with the definition of v2 as the mean macroscopic velocity of its
flow. This circumstance is of no importance so long as the liquid is dealt with as incompressible
or if the solid skeleton of the soil is treated as absolutely rigid (in the latter case the definition
of v2 must be slightly altered). In the case of a deformable skeleton, however, the application
of equation (20a) must lead to erroneous results.

Equation (18) refers to the case of a steady flow. In the case of a variable flow it is replaced
by the following one:

γ2
∂v2
∂t

= −∇p2 +F2 − µ
k
v2

The quadratic term (v2 ·∇)v2 can, of course, be neglected. This equation is, however, inexact,
because of the absence of the factor f at the gradient of the pressure p2. Introducing this factor,
we obtained the corrected equation for the motion of the liquid

γ2
∂v2
∂t

= −f ∇p2 +F2 − µ
κ
v2 (21)

where the ordinary filtration coefficient k is replaced by the coefficient

κ =
k

f
= const · δ2 (21a)

which ensures Darcy’s law in its usual statement (18) for the special case of a steady flow of
the liquid.

Equation (21) is easily generalized to the case, when the deformability and the mobility
of the solid skeleton becomes important, e.g. in the propagation of elastic vibrations. The
absolute velocity of the liquid v2 must be replaced by relative velocity with respect to the solid
phase v2 − v1 where v1 = ∂u/∂t denotes the mean macroscopic velocity of the particles of the
solid phase at the corresponding point. This relative velocity is connected with the friction
force acting on the liquid in unit volume of the soil, by the relation

F21 = −µ
κ
(v2 − v1)

the solid phase being acted on the part of the liquid one by the opposite force F12 = −F21
(referred likewise to a unit volume of the soil).

Replacing v2 in equation (21) by v2 − v1 and p2 by −K2ϕ we obtain finally

γ2
∂v2
∂t

= f K2∇ϕ+F2 − µ
κ
(v2 − v1) (22)

In the case of the absence of external forces this equation can be rewritten in the from

ρ2
∂v2
∂t

= K2∇ϕ− µ

κ f
(v2 − v1) (22a)
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The equation of motion of the solid phase in the general case of a relative motion of the liquid
can be written as follows

γ1
∂v1
∂t

= ~Φ(1) +F1 +
µ

κ
(v2 − v1) (23)

Since the velocity is treated in the elastic theory as a function of the time and of the initial
coordinates of the corresponding particle, ∂v1/∂t is the exact value of the acceleration, in
contradistinction to the quantity ∂v2/∂t referring to the liquid phase; the exact expression
for the acceleration being in the latter case (∂v2/∂t) + (v2 · ∇)v2. In practice, however, the
motion of the liquid is so slow that this difference does not play any role, the quadratic term
being negligibly small. It should be mentioned also that the effective density of the solid phase
γ1 = (1−f)ρ1 in the equation (23) refers to the unstrained state and must therefore be treated
as a constant quantity.

Substituting expression (17) for ~Φ(1) in (23) we get, in the absence of external forces:

γ1
∂v1
∂t

= (L+G)∇θ +G∇2u+K2
µ
1− f − K

Ko

¶
∇ϕ+ µ

κ
(v2 − v1) (23a)

The equations (22) or (22a) and (23a) contain the following quantities: u, v2, ρ2, ϕ and f
(v1 = ∂u/∂t, θ =divu, γ1 = const). The quantities ρ2 and ϕ are connected by the relation

ρ2 = ρo(1− ϕ) (24)

where ρ0 = ρo2 is the normal density of the liquid; its effective density is connected with the
velocity v2 by the continuity equation (20); finally, the variation of the degree of porosity is
connected with θ by the relation

∆f =
1− f (1 + α)

(1 + α)

µ
θ − K2

Ko
ϕ

¶
(24a)

This relation is obtained from (6) if θ is replaced by that part θ = −p1/K which is due to the
“solid” pressure and which, as has been shown in the derivation of equation (15), is equal to
θ − (K2/Ko)ϕ.

We thus get for the determination of the five unknowns a system of five equations, so that
our problem of the integration of the equations of motion of the soil is fully determined.

5 Propagation of Longitudinal Vibrations in the Soil

We shall limit ourselves in the sequel to the investigation of the question of the propagation
of the small vibrations in the soil and shall, accordingly, linearize the equations of motion, i.e.
replace the coefficients of the small quantities (such as u, v1, v2, θ, ϕ and ∆f) by their normal
values, referring to the unstrained phase, just as is done in the ordinary hydrodynamics and
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elasticity theory. For the investigation of longitudinal vibrations we shall apply the operation
div to the equations of motion. We shall make use of the following formula

divv1 =
∂

∂t
divu =

∂θ

∂t
(25)

and further of the equation

divv2 = − 1
γ2

∂γ2
∂t

= − 1
f

∂f

∂t
− 1

ρ2

∂ρ2
∂t

= − 1
f

∂∆f

∂t
+

∂ϕ

∂t

following from equation (20) in a linearized form and which in connection with (11) and (24a)
can be written in the form

divv2 = −(β − 1)∂θ
∂t
+ β0

∂ϕ

∂t
(26)

where for the sake of brevity we have put

β =
1

f(1 + α)
, β0 = 1 + (β − 1)K2

Ko
(26a)

Applying the operation div to both sides of the linearized equation (23a) we get with the help
of the preceding formulae

∂2θ

∂t2
=
E

γ1
∇2θ + K2

γ1

µ
1− f − K

Ko

¶
∇2ϕ+ µ

κγ1

µ
β0
∂ϕ

∂t
− β

∂θ

∂t

¶
(27)

where E = L+ 2G is Young’s modulus for dry soil.
In a similar way equation (22a) gives

∂2ϕ

∂t2
− β − 1

β0
∂2θ

∂t2
=
K2
β0ρ2
∇2ϕ− µ

κγ2

µ
∂ϕ

∂t
− β

β0
∂θ

∂t

¶
(27a)

Equations (27) and (27a) contain in principle the solution of the question of the propagation
of longitudinal vibrations in a moist soil.

Before turning to their integration we shall note an important special or rather limiting
case corresponding to an extremely large value of the parameter µ/κγ2, i.e. to an extreme
smallness of the pores. Dividing equations (27) and (27a) by this parameter and noting that
the quantities θ and ϕ must have finite values, we obtain in this case the following relation
between them

ϕ =
β

β0
θ (28)

This relation means obviously that the two velocities v1 and v2 are identical, there being no
relative motion of the liquid with respect to the solid.

Under the conditions (28) equation (27) is reduced to

∂2θ

∂t2
=

µ
E

γ1
+ ε

β

β0

¶
∇2θ (29)
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where

ε =
K2
γ1

µ
1− f − K

Ko

¶
(29a)

while equation (27a) is reduced to

∂2ϕ

∂t2
=

β

β0
K2
ρ2
∇2ϕ (30)

The latter equation obviously contradicts equation (29), since the functions θ and ϕ must be
connected by the relation (28)–unless the velocity of the propagation of waves, described by
equation (29), i.e.

p
(E/γ1) + (εβ/β

0), coincides accidentally with the velocity of the waves,
described by equations (30)

p
(K2/ρ2)(β/β

0).
Leaving aside this case we see that, when the parameter µ/κ (or µ/κγ2) tends to infinity,

the difference of the velocities v2 − v1 or of their divergences tends to zero in such a way that
its product with this parameter remains finite.

Keeping this in mind we shall represent this difference in the from of a series of powers of
the small parameter κ/µ = ζ, i.e. we shall put

ϕ =
β

β0
θ + ζψ1 + ζ2ψ2 + ζ3ψ3 + . . . (31)

where ψ1, ψ2, . . . are certain unknown functions (with finite values).
Before substituting this expression in equations (27) and (27a) it must de noted that in

solving these equations by the method of successive approximations the function θ must also
be expanded in a series of powers of ζ, i.e.

θ = θ0 + ζθ1 + ζ2θ2 + . . . (31a)

and, consequently,

ϕ =
β

β0
θ0 + ζ

µ
β

β0
θ1 + ψ1

¶
+ ζ2

µ
β

β0
θ2 + ψ2

¶
+ . . . (31b)

Substituting this expression in equation (27), (27a) and equating in each of them the coefficients
of the same powers of ζ on both sides, we obtain a system of equations for the determination of
functions θk and ψk. In the zero approximation (i.e., confining ourselves to terms not containing
the parameter ζ) we have, making use of the notations (29a)

∂2θ0
∂t2

=

µ
E

γ1
+ ε

β

β0

¶
∇2θ0 + β0

γ1

∂ψ1
∂t

∂2θ0
∂t2

=
K2
ρ2

β

β0
∇2θ0 − β0

γ2

∂ψ1
∂t

(32)
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Multiplying the first of these equations by γ1 and the second by γ2 and adding them, we obtain
the following equation for θ0:

(γ1 + γ2)
∂2θ0
∂t2

=

µ
E + ε

β

β0
γ1 +K2f

β

β0

¶
∇2θ0

i.e., according to the definition of ε,

(γ1 + γ2)
∂2θ0
∂t2

=

·
E +

β

β0
K2

µ
1− K

Ko

¶¸
∇2θ0 (33)

This equation describes waves, which are propagated without damping with the velocity

wo =

vuutE + β
β0K2

³
1− K

Ko

´
γ1 + γ2

(33a)

In order to obtain the next approximation, we must, substituting expressions (31a) and (31b)
in equations (27) and (27a), preserve and equate one another the first order terms. As a result
we obtain the system of equations

∂2θ1
∂t2

=

µ
E

γ1
+ ε

β

β0

¶
∇2θ1 + ε∇2ψ1 +

β0

γ1

∂ψ2
∂t

∂2θ1
∂t2

+ β0
∂2ψ1
∂t2

=
K2
ρ2
∇2
µ
β

β0
θ1 + ψ1

¶
− β0

γ2

∂ψ2
∂t

(34)

Multiplying the former by γ1 and the latter by γ2 and adding, we obtain the following relation
between θ1 and ψ1 (or θ1 and ϕ1):

(γ1 + γ2)
∂2θ1
∂t2
−
·
E +

β

β0

µ
εγ1 +

K2
ρ2

γ2

¶¸
∇2θ1 = −β0γ2

∂2ψ1
∂t2

+

µ
εγ1 +

K2
ρ2

γ2

¶
∇2ψ1

or, according to (33a)

∂2θ1
∂t2
− w2o∇2θ1 = −

β0γ2
γ1 + γ2

∂2ψ1
∂t2

+
εγ1 +K2f

γ1 + γ2
∇2ψ1

i.e., in virtue of the definition of ε [formula (29a)]:

∂2θ1
∂t2
− w2o∇2θ1 = −

β0γ2
γ1 + γ2

∂2ψ1
∂t2

+
K2

³
1− K

Ko

´
γ1 + γ2

∇2ψ1 (35)

From a comparison of this equation with equation (33), there follows among other things that
its right-hand side must be orthogonal to the function θ0. For the determination of θ1 the
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function ψ in (35) must be replaced by its expression through θ0 according to one of equations
(32). We thus get

∂

∂t

µ
∂2θ1
∂t2
− w2o∇2θ1

¶
= − γ1γ2

γ1 + γ2

∂2

∂t2

·
∂2θ0
∂t2
−
µ
E

γ1
+ ε

β

β0

¶
∇2θ0

¸

+
γ1K2

³
1− K

Ko

´
β0(γ1 + γ2)

∇2
·
∂2θ0
∂t2
−
µ
E

γ1
+ ε

β

β0

¶
∇2θ0

¸
(35a)

This process can easily be continued in order to obtain approximations of a higher order.

6 Special Case of Longitudinal Plane Sine Waves

We shall not dwell on a more detailed consideration of this question in its general form but shall
discuss the simplest special case of longitudinal harmonic vibrations propagated in the from of
plane sine waves (with a small damping).

Let us assume accordingly that the dependence of the quantities θ and ϕ on the time and
the coordinate x is expressed by the factor

ei(ωt−qx)

where ω/2π = ν is the frequency of the vibrations and q/2π the complex wave number (equal
in the absence of damping to the reciprocal of the wave length λ). The ratio ω/q is equal to
the velocity (in general complex) of the propagation of the waves.

Under such conditions the differential equations (27) and (27a) are reduced to a system of
two linear algebraic equations for the amplitudes θ and ϕ:µ

E

γ1
ξ − 1 + iµβ

κγ1ω

¶
θ +

µ
εξ − iµβ0

κγ1ω

¶
ϕ = 0

µ
β − 1
β0
− iµβ

κγ2β
0ω

¶
θ +

µ
K2
β0ρ2

ξ − 1 + iµ

κγ2ω

¶
ϕ = 0 (36)

where ξ = q2/ω2 = 1/w2. This quantity, i.e. the propagation velocity of the wave, is determined
by the quadratic equationµ

E

γ1
ξ − 1 + iµβ

κγ1ω

¶µ
K2
β0ρ2

ξ − 1 + iµ

κγ2ω

¶
−
µ
εξ − iµβ0

κγ1ω

¶µ
β − 1
β0
− iµβ

κγ2β
0ω

¶
which represents the compatibility condition of equation (36). By elementary simplifications
this equation is reduced to the form

EK2
β0γ1ρ2

ξ2 −
½
E

γ1
+
K2
ρ2β

0 +
β − 1
β0

ε− iµ

κω

1

γ1γ2

·
E +

β

β0
K2

µ
1− K

Ko

¶¸¾
ξ

+1− iµ

κω

µ
1

γ1
+
1

γ2

¶
= 0 (37)
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We shall not write down the expression for its roots and shall only remark that for large values
of the parameters ζ = µ/κ one of them corresponds to waves with a very small damping, and
the other–to waves with a very large damping. The waves of the second kind are thus really
non-existent. For an approximate determination of the value ξ corresponding to the waves
of the first kind, let us represent ξ in the from of a series of powers of the small parameter
iωκ/µ = iη:

ξ = ξ0 + iηξ1 + . . . (38)

Substituting this series into the left-hand side of equation (37) and equating to zero the coeffi-
cients of the various powers of η starting with η−1 we get

1

γ1γ2

·
E +

β

β0
K2

µ
1− K

Ko

¶¸
ξ0 −

µ
1

γ1
+
1

γ2

¶
= 0

EK2
β0γ1ρ2

ξ20 −
µ
E

γ1
+
K2
ρ2β

0 +
β − 1
β0

ε

¶
ξ0 −

1

γ1γ2

·
E +

β

β0
K2

µ
1− K

Ko

¶¸
ξ1 + 1 = 0

2EK2
β0γ1ρ2

ξ0ξ1 −
µ
E

γ1
+
K2
ρ2β

0 +
β − 1
β0

ε

¶
ξ1 −

1

γ1γ2

·
E +

β

β0
K2

µ
1− K

Ko

¶¸
ξ2 = 0

and so on.
The first of these equations leads to expression (33) found before for the velocity of propa-

gation of the waves (ξ0 = 1/w
2
0).

Substituting it into the second equation we obtain the following expression for the first-order
correction:

iηξ1 = iη

EK2

β0γ1ρ2
ξ30 −

³
E
γ1
+ K2

ρ2β
0 +

β−1
β0 ε

´
ξ20 + ξ0³

1
γ1
+ 1

γ2

´ (39)

With an accuracy of the first order with respect to η the complex velocity of the propagation
of the waves w is determined by the formulae

1

w
=
p
ξ = ξ

1/2
0

µ
1 + iη

ξ1
ξ0

¶1/2
≈ ξ

1/2
0 + iη

ξ1

ξ
1/2
0

i.e.
1

w
=
1

w0
+ i

κ

µ
ωw0ξ1 (40)

Inserting this expression in the exponent of the factor exp[i(ωt − qx)] = exp[iω(t − x
w )] and

writing the latter in the form exp[iω(t− x
w0
)− 1

2δx], where δ is the damping coefficient of the
waves per unit length, we obtain for this coefficient the following expression

δ =
κω2

µw30

³
E
γ1
+ K2

β0ρ2
+ β−1

β0 ε
´
− w20 − EK2

β0γ1ρ2
w−20

γ1 + γ2
(40a)
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The damping coefficient thus proves to be proportional to the square of the frequency of the
vibrations, just as in the case of the propagation of longitudinal waves in an ordinary viscous
liquid.

Let us consider in conclusion the limiting case of the propagation of waves in a medium
with a vanishing porosity. In this case f → 0, i.e. consequently, γ1 = ρ1, γ2 = 0; further
κ→ 0, β = 1/f(1 + α) = 1 [this follows from equation (24a)]; β0 = 1 and K = Ko. Under such
conditions δ vanishes and w0 is reduced to

p
E/ρ1, i.e. to the usual expression for the velocity

of propagation of longitudinal waves in an isotropic elastic solid body.
Equation (33a) enables one to determine the variation of this velocity with an increase of

the number and size of the pores, supposed to be filled with the liquid. An essential role is
played here by the decrease of the elasticity modulus K of the solid skeleton. We shall not
dwell here on this question, for it requires a special investigation, which lies beyond the scope
of the present paper.

7 Propagation of Transversal Waves in a Moist Soil

The equations which determine the laws of propagation of transversal vibrations in a moist soil
can be obtained from the fundamental equations of motion (22) and (23a) by applying to them
the operation rot. Introducing the notations 12 rotv1 =

~Ω1, 12 rotv2 =
~Ω2 (angular velocities of

the elements of the solid skeleton and of the liquid phase) we get:

γ1
∂2~Ω1
∂t2

= G∇2~Ω1 + µ
κ

∂

∂t

³
~Ω2 − ~Ω1

´
γ2

∂~Ω2
∂t

= −µ
κ

∂

∂t

³
~Ω2 − ~Ω1

´
(41)

In the case of plane sine waves propagated in the direction of the x axis these differential
equations reduce to the linear equations:

(Gξ − γ1) ~Ω1 =
iµ

κω

³
~Ω2 − ~Ω1

´
γ2~Ω2 =

iµ

κω

³
~Ω2 − ~Ω1

´
(42)

where ξ = q2/ω2, while q and ω have the same meaning as before. Eliminating from them ~Ω1

and ~Ω2 we obtain the following equation for ξ:

1 =
i

η

µ
1

γ2
− 1

Gξ − γ1

¶
whence it follows

Gξ = γ1 +
1

1
γ2
+ iη
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or, in the first approximation (with respect to η):

ξ =
γ1 + γ2
G

− iγ
2
2

G
η (43)

This formula shows that the transversal waves are propagated in a moist soil with the velocity

wo⊥ =

s
G

γ1 + γ2
(43a)

and with the damping coefficient

δ =
κ

µ

γ22
γ1 + γ2

ω2

wo⊥
(43b)

which, just as in the case of longitudinal waves, is proportional to the square of the vibration
frequency.

8 Seismoelectric Effect

The electrokinetic effect connected with the propagation of longitudinal waves in a moist soil
can be calculated with the help of the formula

E = − εζ

4πµσ

∂p

∂x
(44)

for the strength of the longitudinal electric field in the case of a steady flow of the liquid through
the pores of the fixed rigid skeleton, this formula being obtained by differential equation (1)
with respect to x.

In the case of a Poiseuille flow of the liquid through a capillary tube with a radius r, the
average velocity of the flow v̄ is connected with the pressure gradient by the relation

v̄ = − r
2

8µ

∂p

∂x
(44a)

Substituting the resulting expression for −∂p/∂x into (44) we get

E =
2εζ

πσr2
v̄ (44b)

If the capillary is moved uniformly in the direction of its axis with a velocity v1 this formula
remains valid, if v represents the relative velocity of the liquid, i.e. the difference

v̄ = v2 − v1
We shall assume that this formula can be applied to the soil by a suitable choice of the effective
radius of the pores r. Under such conditions the calculation of the electric field E is reduced
to the determination of the difference v2 − v1.
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In the case of longitudinal waves this difference can be expressed through θ with the help
of the relations (25) and (26), which assume the form

iqv1 = iωθ, iqv2 = −iω(β − 1)θ + iωβ0ϕ

We thus get
v2 − v1 = ω

q
(β0ϕ− βθ) = wo(β

0ϕ− βθ)

or, according to (31),
v2 − v1 = woβ0ζψ1 =

κwo
µ

β0ψ1

The function ψ can be expressed through θ0 (the value of θ in the zero approximation) with
the help of one of expressions (32), which in the case under consideration is reduced to

−iωβ
0

γ2
ψ1 =

µ
K2
ρ2

β

β0
q2 − ω2

¶
θ0

We thus get, in the first approximation

ψ1 = iω
γ2
β0

µ
K2
ρ2

β

β0
ξ0 − 1

¶
θ0

whence

v2 − v1 = iωκ

µ
γ2wo

µ
K2
ρ2

β

β0
1

w2o
− 1
¶
θ0 (45)

Replacing here θ = ∂u/∂x by −iqu, where u is the displacement of the particles of the soil, and
substituting into (44), we obtain finally

E =
2εζκω2fρ2
πσr2µ

µ
K2
ρ2

β

β0w2o
− 1
¶
u (46)

Hence it is seen that, for a given value of the amplitude of the displacement u, the electric field
is proportional to the square of the vibration frequency (just as the damping coefficient is). It
follows further from (46) that the field E is proportional to the degree of porosity f (if the
dependence of the ratio β/β0 on f can be neglected) and is independent of the radius of the
pores (since the filtration coefficient κ is proportional to the square of this radius r).

In the derivation of the equation (46) it has been tacitly assumed that the time τ , required
for the establishment of the kinetic potential gradient, is sufficiently small compared with the
vibration periods 2π/ω so that the value of E at any instant of time is practically identical with
that, which corresponds to the instantaneous value of the relative velocity.

This assumption is probably valid up to the ultrasonic frequencies of the order of 103 kc
and certainly holds in the case of seismic vibrations, which have a much lower frequency. The
relaxation effects in the electric double layers on the boundary between the solid and the liquid
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phase can thus play a certain role in the propagation only of ultrasonic vibrations in artificial
colloidal media with a solid skeleton.

It should be noted that such media are constituted by gels. Of special interest, from the
point of view of the above theory, are thyxotropic gels of lyophobic colloids. We hope to come
back to this question in a special paper.

It should be mentioned in conclusion that solid metallic bodies can also be treated as two-
phase systems similar to the soil, in which the role of the solid skeleton is played by the crystal
lattice, composed of the positive ions, and the role of the liquid phase–by the “electron liquid”.
Hence it follows that the propagation of longitudinal elastic vibrations in a metallic body must
be accompanied by electrical effects similar to those which are observed in the propagation of
seismic vibrations in the soil. This question requires a special investigation.
(Translated by S. Frenkel.)
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