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Introduction 

High porosity zones bearing reservoir fluids are often interbedded with relatively 

impermeable lithologies. Fluids in the pores and fractures in the reservoir significantly affect 

the acoustic bulk characteristics, which are delineated from surface seismics, vertical seismic 

profiling, cross-well tomography, and sonic logging. The detected waves contain information 

about the rock along the wave path and the objective of all techniques is to extract this 

information in terms of geological structures and rock/fluid properties. 

Rock and fluid properties are accessible only around the well vicinity from log and core 

measurements. In order to reduce the uncertainties during the exploration, development, and 

production phase of a hydrocarbon reservoir, there are needs to extract more information from 

seismic data, especially for reservoir modeling and time lapse interpretation. In general, only 

structural images with acoustic migration and elastic parameters with AVA analysis are 

recovered from 3D seismic data. Therefore during seismic data processing, the earth is, in 

particular, assumed to be nonporous. Poroelastic modeling of wave propagation at seismic 

frequencies is of major importance, since the governing rock and fluid parameters that cause 

this energy loss might then be extracted from the amplitude decay of the recorded waves. 

Biot (1956) developed a fundamental theory for the propagation of elastic waves through a 

macroscopically homogeneous fluid saturated porous medium. However, Biot’s theory 

doesn’t predict the level of attenuation in the real earth. In Fig. 1, the purely viscosity-based 

damping model of the Biot theory underestimates the field data of Sams et al. (1997). 

Recently, Pride et al. (2004) matched the data with a ‘double-porosity’ model with a strong 

contrast between the frame bulk moduli of the two porous phases saturated by a single fluid. 

The research presented here shows that the concept of White et al. (1975), in which a single 

porous skeleton fully saturated with two immiscible fluids, is capable to explain the observed 

level of attenuation in the field data of Sams et al. (1997). 
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Fig. 1 Specific 

attenuation as a function 

of frequency. Comparison 

between the field data 

(boxes) of Sams et al. 

(1997) and modelled data 

(curve) based on the Biot 

theory (1956). 

Periodically layered fluid distribution 

Biot’s poroelasticity equations have been applied to the particular problem of compressional 

wave propagation through a periodically horizontally layered medium (see Fig. 2). This 

problem is chosen, because it is the simplest possible heterogeneous medium for which 

White’s model can be deduced from first principles. The specific attenuation Q
-1
 is defined by 

the imaginary over the real component of the fast compressional wavenumber: 

 

                                                             Propagating wave 

 

Fig. 2. Wave propagation through a periodically layered porous medium. Layers 1 and 2 

have pore fluids with different properties. 
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where ω  is frequency, ρ is density, and *H  is the complex plane wave modulus, defined as 

the ratio of an effective pressure p and a resulting strain ε. In the original paper by White et al. 
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(1975), this strain was separated into a part that is due to a fast compressional wave obeying 

the wave equation and a slow compressional wave obeying the diffusion equation.  

The effective strain caused by the fast compressional wave is 

ee Hp−=ε ,           (2) 

where He is the effective plane wave modulus of the layered medium (see Fig. 2): 
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in which L is the sum of the half thicknesses of both layers. The elastic modulus Hl = 1, 2 is the 

Gassmann constant of layer l, which is in terms of Biot’s phenomenological parameters  
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The solution of the diffusion equation 
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is the complex wavenumber of the slow compressional wave ql in layer l with 
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where the viscous damping factor bl is defined by Chandler and Johnson (1981). The 

wavenumber ql is used to calculate the acoustic impedance Zl looking into layer l from the 

boundary by Darcy’s law 
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where pl is the pore fluid pressure in layer l, and ηl and κ are the viscosity and permeability. 

The velocity of the fluid relative to the solid skeleton is 
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where Bl is Skempton’s coefficient of layer l, which is defined as  
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in whichφ  is the porosity. At low frequencies the total displacement is related to the relative 

fluid velocity by the difference in Skempton’s coefficients of both layers 
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With the expression (8) we find for the strain due to fluid flow 

L

p

ZZi

BB

LL

uu
flow

)(

)(

21

2

12

21

21

+
−

=
+
+

=
ω

ε .        (11) 

Finally, with expression (2) the complex plane wave modulus derived by White et al. is 
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From the numerical models is concluded that for layers that are alternately saturated with 

water and gas, fluid flow across the boundaries results in substantial attenuation of the low 

frequency compressional waves, see Fig. 3. 

 

 

Fig. 3 Specific 

attenuation as a function 

of frequency and the gas 

fraction s2 according to a 

White model to represent 

a periodically layered 

fluid distribution of water 

and gas. 

Conclusions 

It is shown that White’s local flow model predicts considerably higher levels of attenuation 

than the original Biot model. Although the rate of attenuation is associated with several 

factors, its dependence on three aspects is presented here, namely frequency, the degree of 

saturation and the fluid content. First, there is a maximum attenuation at some specific 

frequency. Second, there is a maximum attenuation at some specific percentage of gas, while 

an increasing gas fraction shifts the attenuation peak towards higher frequencies. If this model 

is extended to the higher frequency regime following the Dutta-Odé approach, it is able to 

predict the levels of attenuation in the data by Sams et al.  
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