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Abstract 

 

Spectral attributes of the low-frequency (LF) ambient wave field have been found to correlate with 

hydrocarbon (HC) reservoirs throughout the world. A major challenge today for using the LF 

attributes as a HC detection tool is surface wave noise. Knowing the signal-to-noise ratio (SNR) can 

provide insight for a better understanding of the LF phenomenon and as a guide for the noise 

tolerance of LF attribute based HC detection. We analyse a noisy dataset acquired in an urban area in 

Germany over a known oil reservoir with constrained synthetic noise models to address the SNR 

question in the area. Seven SNR scenarios were modeled and these synthetic datasets were used to 
train neural networks for HC detection. The performance of these predictors on the real dataset was 

used as an objective measure to estimate the SNR present in the actual data attributes. We estimate the 

SNR for the field data to be greater than 0.06 but less than 1.01. Based on the synthetic data alone, we 

estimate the minimum SNR allowable for reliable HC detection to be 0.06 for this survey. To our 

knowledge, this work represents a first attempt at quantitatively describing the noise tolerance of HC 

detection based on spectral LF features. 
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Introduction  

 

Empirical evidence indicates that spectral features of the low-frequency (LF) ambient wave field are 

correlated with the location of hydrocarbon (HC) reservoirs (Dangel et al., 2003; Holzner et al., 2005; 

van Maastrigt and al Dulaijan, 2008; Lambert et al., 2008; Saenger et al., 2009). The features are 
usually found in the frequency band of 1-6 Hz and might be related to microtremors generated in the 

subsurface through an interaction of the ambient wave field with the two-phase fluid of the HC 

reservoir (Saenger et al., 2009). Lambert et al. (2008) and Saenger et al. (2009) describe some LF 
attributes that capture the low frequency anomaly. One of the major challenges for using these 

attributes is surface wave noise. Berteussen et al. (2009) show that surface waves energy can 

contaminate the LF band of interest, while Hanssen and Bussat (2007) mention the risk of 

confounding such energies with subsurface waves.  

 

A  noisy dataset was acquired in 2008 in an urban setting in Germany.  Goertz and Schechinger 

(2009) analyzed the dataset with respect to the known oil reservoir using two of the LF attributes 

suggested by Lambert et al. (2008): PSD-IZ and V/H.  While the energy attribute PSD-IZ was erratic, 

the spectral ratio attribute V/H did correlate with the reservoir. It can be assumed that the signal-to-

noise ratio (SNR) in this dataset attribute was sufficient for HC detection.  The different performance 
is likely the cause of the deconvolutional nature of spectral ratios. 

 

In this work we set out to estimate (1) the minimal SNR tolerance for using LF spectral attributes for 

HC detection and (2) the SNR level present in this survey dataset. To do so, we produced seven 

synthetic datasets with varying SNRs using numerical modeling. First, neural networks are trained for 

HC detection on these synthetic datasets, and their performance is compared with a random coin toss 

test to check statistical significance of detection success and establish a SNR threshold.  The second 

agenda is addressed by applying the synthetically trained neural networks to the actual dataset. The 

SNR used to train the HC detector that performs best on the actual data is interpreted as being closest 
to representing the noise regime in the actual data.  

 

The first section describes survey 
acquisition and the LF attributes used 

by Schechinger and Goertz (2008). 

Then the modeling setup is described 
and synthetic attribute profiles for 

several SNRs are shown. Both 

synthetic and real HC detection rates of 

the neural networks are given and the 

results are discussed. 

 

 

 

Survey and attribute analysis 

 

A LF survey of a 7.5 km long line consisting of 25 broadband seismometers (Nanometrics T40), 

spaced 300 m apart, was recorded synchronously for 48 hours over a weekend. This line crossed a 
known oil reservoir located approximately at its center, as well as an industrial quarter, freeways, and 

a major navigable waterway.  The energy of the ambient wave field in this dataset is observed to be 

among the worlds highest in the 1 to 4 Hz band (Goertz and Schechinger, 2009). To avoid noise 

contamination, Goertz and Schechinger (2009) used the relatively quiet early Sunday morning time 

window for their analysis. They first calculated the power spectral densities (PSD) of the vertical and 

horizontal particle displacement. Then they computed two LF attributes: (1) PSD-IZ, the integral of 

the vertical PSD from 1 to 3.5 Hz, and (2) V/H, the spectra ratio of the vertical to the horizontal 

spectrum integrated from 1.5 to 3.5 Hz (Lambert et al., 2008). The profiles of these attributes for the 

line are shown in Figure 1 a,b. The PSD-IZ attribute clearly was subject to surface noise effects and 

fails to indicate HC reservoir locations (shown as a grey box). The V/H profile on the other hand 

 
Figure 1 a. PSD-IZ attribute from a LF survey. b. V/H attribute 

from the same  survey. The grey box indicates surface projected HC 

locations. 
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exhibits significantly higher 

values around the reservoir 

location and was thus 

considered to be sensitive to the 

subsurface oil reservoir. 

Modelling Setup 

We construct an elastic model 

of this LF line. The model is 
11.2-km long by 3.7-km deep. 

Figure 2 shows the P-wave 

velocity distribution obtained 

from a previous seismic 3D 

survey of this line. Uniform 

density of 2000 kg/m
3
 and  

constant Poisson's ratio of 0.25 were used. The model is discretized  into a regular grid of 10m by 

10m and a staggered-grid finite difference solver (Saenger et al. 1999) is used for forward modelling. 

 

Even though the exact source generation 
mechanism is unknown, here we model 

the reservoir as a collection of primary 

tremor sources consisting of horizontal 

line sources around 200-500m long. A 

vertical polarization of the sources is 

used because of the high V/H ratio 

observed at reservoir location (Goertz 

and Schechinger, 2009). The tremor 

sources consist of Ricker wavelets with 
a 3 Hz center frequency uniformly 

distributed in time. As shown in 

Figure 2, these sources are randomly 
placed in the simulation space within a 

1.5 km-wide region beneath the surface 

which coincides with the actual reservoir location in the model domain. Surface noise sources are also 
modeled as primary sources.  These are short line sources about 10-30 m long, with 0.1-15 Hz filtered 

white noise. Since we cannot assume a particular polarization of the noise, they are modeled as either 

vertically or horizontally polarized. Noise sources, hatched boxes at the surface in Figure 2, are placed 

between 0-20m depth at locations identified as major noise sources such as freeways, industrial and 

town centers, and major waterways. Both the vertical and horizontal particle velocities are recorded at 

the surface. 

 

Seven SNR scenarios are 

simulated: {inf, 1.01, 0.20, 
0.10, 0.06, 0.02, 0}. We 

define SNR as the ratio 

between the power density of 
tremor to surface noise as 

picked up by a (virtual) 

seismometer above the HC 

location. Infinite SNR means 

that there is no noise present 

– an unrealistic scenario. If 

the simulation results of this 

case compares well with the 

 
Figure 2. P-Wave velocity profile along the northern line with HC tremor and 

noise source locations. Red=high velocity, blue=low velocity. At surface 

darker red indicates stronger noise source. 

 
Figure 4.  V/H profiles for seven synthetic datasets with different SNRs. These 

LF attributes are used as input for neural network trainings. Gray box shows the 

synthetic HC location.   

 
Figure 3 a. synthetic PSD-IZ profile (SNR=0.10). b. Synthetic V/H 

profile (SNR=0.10). The grey box indicates surface projected HC 

locations. 
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actual survey result, it indicated that our numeric model is inaccurate. The other end-member, SNR=0 

means no tremor signal is present. If this result compares well with the actual survey, it indicates the 

LF attribute features observed by Goertz 

and Schechinger (2009) cannot be 

attributed to a subsurface origin. The 
comparison of these synthetic results with 

the actual data will let us identify SNR 

present during this survey.  

 

Maximum SNR threshold.  

 

The same attributes used by Schechinger 

and Goertz (2009) are computed for the 

seven SNR synthetic datasets.  PSD-IZ 

and V/H profiles of SNR0.10 are shown 

in Figure 3a and b, respectively. As in the 

actual survey results shown in Figure 1, the PSD-IZ profile is strongly affected by the surface noise 

and does not correlate with the reservoir location. Conversely, the V/H profile matches the actual 
profile with strongest values around the reservoir location and a low plateau at the right. The model is 

thus reproducing important features of the actual data set, which corroborates its use.  

 

Figure 4 shows the V/H profiles for the seven synthetic SNR datasets. The profiles are normalized to 

have a mean of 1 so they can be plotted together. These profiles are used to train seven neural 

networks for HC prediction, one for each SNR scenario. The neural networks are multi-layer 

perceptron with one hidden layer. To avoid over training each network is trained on 80% of  input 

data, and uses the remaining 20% data for testing (see, e.g., Duda, 2001). The actual survey only 

contains  25 stations with 3 of them above HC reservoir. Small training samples exacerbate the issue 
of over training. To avoid this, we choose to use a denser spatial sampling, and 98 synthetic stations 

are used, with 10 of them above HC reservoirs.  

 
We evaluate the success rate of each neural network based on (1) the fraction of correctly detected HC 

receivers (true positives, TP) and (2) the fraction of correctly detected NHC receivers, (true negatives, 

TN). Figure 5a shows the HC probability predictions for the various SNR scenarios, with the darker 
red circle indicating a probability of 1 for HC and white  circle indicating a probability of 0. Figure 5b 

shows the success rates (TP and TN) plotted against the neural network SNR value. The dashed lines 

here indicate the maximum expected success rate of a random coin-toss prediction at significance 

level 80%. The neural networks trained below a SNR of 0.06 fail to beat this random predictor and are 

considered not statistically significant. Based on the synthetic data we thus establish a minimum 

required SNR at which the spectral V/H attribute can be used for HC detection here. 

 

SNR Estimation of the 

Survey Data  
 

We applied the seven neural 

networks on the actual V/H 
profile of Goertz and 

Schechinger (2009). Again, 

prediction profiles and 

success rates are calculated 

and shown in figures 6 a,b. 

As expected the SNR 0 

predictor fails, but also the 

infinite SNR predictor fails 

as well. We discard the 

predictions made by neural 

 
Figure 6. a. HC predictions for the northern line, generated from networks trained 

on various SNR synthetic data and applied to the actual survey V/H attributes. The 

grey box shows actual HC location. b. HC/NHC detection success rates plotted 

against SNR with statistical significance threshold shown in dashed lines. 

 
Figure 5. a. HC probability predictions of the neural networks 

generated from purely synthetic datasets. The grey box marks the 

HC location. b. Prediction success rates for both HC and NHC with 

test threshold to beat random coin-toss test. 
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networks with SNR <= 0.06, since they do not beat the coin-toss test threshold. The remining three 

SNR predictors all correctly identified the HC stations. However, SNR 1.01 predictor miss identifies 

three NHC stations, one extra miss identification than the two miss identifications made by SNR 0.20 

and 0.10 predictor. From this performance, we thus estimate that the SNR in this data set is less than 

1.01 but greater than 0.06.  
 

Conclusion 

 

The predictors trained on SNR<=0.06 fail to beat the uninformed coin-toss test in predicting the 

synthetic HC locations. For a reliable HC detection using the spectral V/H attribute we therefore 

conclude that the SNR has to be above 0.06 for the particular configuration we studied. 

 

Since neither of the extreme cases, SNR=0 or infinite, provide a good match to actual survey data, we 

conclude that there are both surface noise and subsurface signal present in this survey. Based on the  

performance of the HC and NHC predictions made on the other SNR models we estimate that the 
effective signal-to-noise regime here falls somewhere between 0.06 to 1.01 (linear scale). The 

underperformance of other neural networks, the extreme cases and SNR1.01, are due to using a 

predictor that was trained in a wrong SNR regime and therefore can not interpret the data correctly. 
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