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A theory is developed for the attenuation and dispersion of compressional waves in 
inhomogeneous fluid-saturated materials. These effects are caused by material inhomogeneity on 
length scales of the order of centimeters and may be most significant at seismic wave frequencies, 
i.e., on the order of 100 Hz. The micromechanism involves diffusion of pore fluid between 
different regions, and is most effective in a partially saturated medium in which liquid can diffuse 
into regions occupied by gas. The local fluid flow effects can be replaced on the macroscopic 
scale by an effective viscoelastic medium, and the fbrm of the viscoelastic creep function is 
illustrated for a compressional wave propagating nornaal to a layered medium. The wave speeds 
in the low- and high-frequency limits are associated with conditions of uniform pressure and of 
uniform "no-flow," respectively. These correspond to the isothermal and isentropic wave speeds 
in a disordered thermoelastic medium. 

PACS numbers: 43.30.Ky, 43.20.Hq, 43.40.Ph, 43.20.Jr 

INTRODUCTION 

Attenuation of elastic waves in the Earth in the range 
from zero to several hundred hertz is recognized as having 
many possible causes, and it is doubtful whether it can be 
described by any single theory. A summary of some of the 
effects that have' been considered is given by Murphy et al. t 
They point out that several processes, such as frictional 
sliding between grains and internal loss mechanisms in the 
pore fluid, are not adequate to explain the observed mag- 
nitude of attenuation. The theory of Biot 2'3 for fluid satu- 
rated porous (permeable) rock is also inadequate if one 
assumes the porous medium to be spatially uniform. 4• 
Berryman 6 has pointed out, however, that if the permeabil- 
ity is nonuniform then the effective permeability that enters 
into the attenuation is the average permeability, in contrast 
to the harmonic average one obtains for steady flow 
through a heterogeneous rock. Berryman argued that the 
enhanced permeability could account for seismic wave at- 
tenuation within the context of Biot's theory. Other possi- 
ble mechanisms that have been proposed and studied in 
detail include local "squirt flow "•'3 and capillary effects. 7 
Jones s provided a detailed phenomological description of 
seismic energy dissipation in terms of linear viscoelastic 
models. 

This paper is concerned with a class of models first 
proposed by White 9 and developed by White et al., tø Dutta 
and Od6,•'•2 and discussed by Dutta and Seriff.•3 The basic 
premise is that if the medium is only partially saturated 
with fluid then it is possible for the fluid to undergo "glo- 
bal" motion. The term global is used in contradistinction 
to local, which indicates motion over lengths on the order 
of the pore radius; global suggests motion over much 
greater lengths. The fluid motion is associated with pore 
pressure diffusion and can result in relatively large attenu- 
ation. The frequency range is such that the diffusion length 

is commensurate with the scale of inhomogeneity assoei- 
ated with the partial saturation, and both lengths are much 
less than the wavelength. The precise nature of the scaling 
is discussed in the next section. The general mechanism 
does not assume partial saturation, but only that the me- 
dium is inhomogeneous. For example, the pores could be 
completely saturated with liquid but the compressibility of 
the solid frame may vary with position. However, the dif- 
fusion is greatest if the fluid compressibility varies signifi- 
cantly from point to point. Thus, White 9'm and others have 
concentrated on rocks infiltrated by both gas and liquid. 
The gas and liquid are assumed to occupy distinct parts of 
the same connected pore space so that the liquid may easily 
diffuse into the region occupied by gas. 

In his original study White 9 considered a spherical 
region of gas or liquid surrounded by a concentric shell of 
liquid or gas. The macroscopic attenuation of seismic en- 
ergy was assumed to be related to an effective modulus 
which is determined by subjecting the representative sam- 
ple to oscillatory forcing and estimating the bulk response, 
i.e., the average dilatation in the spherical model of White. 9 
The resulting effective modulus is complex, implying dis- 
persion and attenuation. White et al.,tø using the same pro- 
cedure as White, 9 considered a layered medium with alter- 
nating liquid and gas zones. Subsequently, Dutta and 
Od6 II't2 considered the same spherical model as White, 9 
but they solved the microproblem by modeling each region 
using the more sophisticated Biot theory for fluid saturated 
media. The pore pressure diffusion is then replaced by the 
Biot second wave, or slow wave, which reduces to a diffu- 
sive process at low frequency. The analysis of Dutta and 
Od6 was necessarily quite a bit more complicated than 
White's, but they found that the predicted attenuation and 
dispersion were not appreciably different. Dutta and Od6 
also noted that the attenuation is not strongly affected by 
the microstructure (spherical versus layer models). 
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The purpose of this paper is to develop a macroscopic 
theory which takes into account the type of microstructure 
in the White model. More generally, the theory developed 
here allows us to "average" material inhomogeneity occur- 
ring on length scales commensurate with the pore pressure 
diffusion length. First, it is shown by a detailed study of the 
specific model of a periodically layered poroelastic medium 
that the effective wave number of compressional waves is 
defined by the solution to a problem equivalent to that 
studied by White et aLm This result provides a rigorous 
basis for the concept of a frequency-dependent effective 
modulus, which was not properly justified by previous au- 
thors ø-n in terms of a specific, complete model. In this 
paper the microstructural mechanics is assumed to be de- 
scribed by the Biot theory for fluid-filled media. By allow- 
ing the Blot continuum to be inhomogeneous and applying 
ideas from homogenization theory, it is shown that the 
macroscopic effective medium is simply viscoelastic. Thus, 
the Blot equations, which are themselves homogenized ver- 
sions of the coupled equations of elasticity and fluid dy- 
namics, TM are homogenized even further in this paper. 
Some general results are also derived for the limiting low- 
and high-frequency moduli of the effective viscoelastic me- 
dium, for both the simple layered model and in general for 
full three-dimensional heterogeneity. It is shown by anal- 
ogy that these moduli are directly related to the isothermal 
and isentropic moduli of disordered thermoelastic materi- 
als, and that the analogy is of practical use in obtaining the 
moduli. Explicit expressions are given for the limiting 
moduli for different situations, including the full set of 
transversely isotropic moduli in a layered medium. 

The layout of the paper is as follows. First, the phys- 
ical scalings involved are defined and discussed, without 
reference to any specific problem. Biot's poroelasticity 
equations are then applied to the particular problem of 
compressional waves propagating through a periodically 
layered medium. This problem is chosen because it is prob- 
ably the simplest for which the White model can be de- 
duced from first principles, with explicit expressions for 
many of the effective parameters. For instance, it is shown 
that the effective modulus corresponds to a causal vis- 
coelastic creep function, which is illustrated for the case of 
a water/gas-saturated layered medium. The connection be- 
tween the layered medium problem and the two-phase 
model of White et al. m is shown explicitly in Appendix A. 
The remainder of the paper deals with the limiting moduli 
for arbitrary, three-dimensional heterogeneity, in the limits 
of low and high frequency. The disparity in the limiting 
toodull indicates the strength of the attenuation and dis- 
persion, and despite the fact that they cannot be easily 
obtained, it is possible to make some general but meaning- 
ful statements about the values of these moduli using a 
simple analogy with thermoelasticity. 

I. SCALING 

There are many lengths associated with wave propa- 
gation in fluid-saturated rock, ranging from the total dis- 
tanee of propagation which may be on the order of a kilo- 
meter, to the shortest characteristic length scales of the 

TABLE I. Data for Berea sandstone. The shear modulus is p= (1 
-- qb ) pf• and the bulk modulus is K= { 1 -- & ) pf-• -- 4It/3. The underlying 
grain is presumed to have bulk modulus Kg=3.79X ]0 I• g/era s 2. 

Parameter Symbol Value Units 

Porosity & 0.19 "- 
Permeability •c 0.2 darcy= 10 -acm 2 
Compressional speed Jr 3670 m/s 
Shear speed •s 2170 m/s 
Density Ps 2.65 g/cm 3 

microstructure in the rock, which is certainly on the sub- 
micron level. It is helpful to focus on four particular 
lengths, some better defined than others, but each quite 
distinct: The wavelength, the pore radius, the viscous skin 
depth, and the diffusion length, 

J.=v/f, Lp=(8FK) •/2, 
(1) 

( 2,11,a ' 
respectively, where v is the wave speed, f is the frequency, 
and the remaining parameters will be defined presently. In 
order to appreciate the relative magnitudes, it is instructive 
to consider compressional waves in water-saturated Berea 
sandstone (see Tables I and II) at the specific frequency 
f= 100 Hz, for which •.=36.7 m. A much shorter length 
scale can be defined from the value of the permeability •c, 
which is a measure of area. The square root of •c gives an 
estimate of the typical pore radius, or more accurately, the 
average pore dimension in rocks can be defined as L•, (D. 
L. Johnson, private communication), where F is the for- 
mation factor of the rock. 15 An empirical rule of thumb for 
rocks is that F= 1/• •, where • (0 < •b < 1 ) is the porosity, 
implying L•,=6.66 #m for the case considered. Both Lo 
and Lu are intermediate length scales associated with dif- 
fusion. The viscous skin depth depends upon o=2•rf, the 
circular frequency, V the fluid viscosity, and pf the fluid 
density. The skin depth for water saturation at standard 
temperature and pressure is 56/tin, which exceeds the pore 
radius by an order of magnitude, indicating that fluid mo- 
bility is low in the pore space and is dominated by the 
viscous forces causing the fluid to adhere to the pore walls. 
A critical frequency, Oc=2n'fc, exists above which the 
fluid is freed from its viscous ties and can undergo rela- 
tively large motion with respect to the frame (within the 
limits of infinitesimal linear theory!). It may be defined as 
the frequency at which Lt,=L •, implying •=•l/4Fpf•. 
Thus, fc=7.2 kHz for the example considered. The final 
length scale Lu is defined by pore fluid diffusion within the 
solid, and depends upon the diffusion coefficient 
V•, 1•'" where Kf is the fluid bulk modulus. Alternatively, 

TABLE II. The fluid parameters used in the numerical calculations. The 
fluid bulk modulus is K f--p ftYs. 

Fluid r/ (g/era s) p/(g/cm 3) o/(m/s) 
Water 1.0X 10 -• 1.00 1500 
Gas 2.2X 10 -4 0.14 630 
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TABLE III. The four lengths for water-saturated Berea sandstone at 100 
Hz. 

Length Symbol Value (m) 

Wavelength J. 3.7)< 10 I 
Pore pressure diffusion length L d 6.1 )< 10 -z 
Viscous skin depth L v 5.6X 10 -5 
Pore radius L o 6.7)< 10 -7 

the identity Kœ= pf•f, where vf is the fluid sound speed, 
implies Do= (4&Fcoc)-•. The diffusion length Ld=6.1 
cm in the example considered. The four lengths are tabu- 
lated in Table III from which it is evident that they are 
quite disparate, with no two of similar magnitude. 

The main purpose of this paper is to examine the effect 
of material inhomogeneity on the length scale of the pore 
pressure diffusion length L a. Let L be a typical length over 
which the material properties vary. For instance, L may be 
the length of a unit period in a periodically layered me- 
dium, or more generally, L may be the spatial autocorre- 
lation length in a nonperiodically layered medium. The 
following scaling is assumed: 

A>>L, L=O(La), L>>Lv>>L•,. (2) 
The final inequality implies that the quasistatic approxima- 
tion to the Biot theory for saturated rock is adequate. If 
L•,•Lv, then in principle, the diffusion of pore pressure 
could be replaced by the Biot second wave. 2 This possibil- 
ity is examined by Dutta and Od6 u'•2 who generalized the 
spherical White model using the full Biot theory. 

We are here concerned with situations where the het- 

erogeneity of the porous medium results from the presence 
of both liquid and gas in the pore space, each fluid having 
quite different mechanical properties. The medium may 
then be thought of as partially saturated in the sense that 
the liquid is the dominant saturant. This situation is dis- 
tinct from that considered by Berryman and Thigpen •s 
who generalized the Biot theory to account for the possi- 
bility of more than one fluid in the pores. Berryman and 
Thigpen assumed that each fluid is present at every mate- 
rial point, and therefore they introduced new variables for 
the additional fluids. It is assumed here that there is only a 
single fluid at any given point, but the fluid at neighboring 
points, on the order of L distant, may be different. The 
present theory considers an inhomogeneous porous me- 
dium in the sense of Biot a with L as the length scale, 
whereas the theories of Berryman and Thigpen •8 and oth- 
ers for partially saturated porous media attempt to derive 
macroscopically homogeneous equations that incorporate 
inhomogeneity on the length scale L v. 

II. WAVES IN A HORIZONTALLY LAYERED MEDIUM 

A. The system of equations 

The theory of dynamic poroelasticity as first derived 
by Biot a has been discussed extensively in the literature; for 
example, Burridge and Keller 14 derived the equations of 
motion from first principles using homogenization theory. 
The notation of Biot's 1962 paper 3 is used here. The solid 

(matrix) and relative fluid displacements are u and 
w=•b(uf--u), where uf is the total fluid displacement. The 
bulk stress tensor r and the pore pressure p are 

r=Lce--aM•I, p=--aMe+M•, (3) 

where e is the solid strain, e=div u, •=-div w, and I is 
the second-order identity tensor. The isotropic confined 
stiffness tensor L c involves the bulk and shear moduli K c 
and /•. The corresponding unconfined bulk modulus is 
K < K•. Some of the moduli and parameters are related, 
e.g., 

I qb 

Kc=K+ct2M' M K/+ K ' (4) 
where Kf is the fluid bulk modulus. The parameter a, 
•b < a < 1, can be related to the bulk modulus of the gran- 
ular material Kg, by a= !--K/Kg) 9 

We consider time harmonic longitudinal wave motion 
traveling normal to the layers in a layered medium, with 
e -iøt understood but omitted. The material parameters in 
the Biot equations are functions of a single coordinate only, 
say z, and the displacement vectors u and w are polarized 
in the z direction, with components u and w. The natural 
or open-pore boundary conditions of poroelasticity require 
that the four-vector V=(tJ,tb,--r=,p) r is continuous for 
all z, even if the material properties are discontinuous. The 
equations of motion 3 and the constitutive relations (3) can 
be reduced to a system of first order equations for V, 

where 

1 

K+4/3p 
S= 

K + 4/3/• 

•]V(z) -E(z)V(z), 

K + 4/3/• 

K•+4/3/• ' 
M(K+4/3•) 

(5) 

(6) 

Here, p=qbpf+(l--qb)p•, p•, and pf are the average, 
grain, and fluid densities, respectively. The only nonzero 
element of E is E4• = •//g, which together with the t• ele- 
ment of R defines the viscodynamic operator of the pore 
space, ,fig+ (--ico)•(o), where •/is the viscosity and g 
the static permeability. The dynamic permeability effects 
are lumped into the frequency-dependent density t•. Our 
results will not depend upon the latter quantity, so we say 
no more about it here but refer to Norris •ø for further 
details. The form of E in Eq. (5) emphasizes the dominant 
role of the Darcy flow term at low frequency, resulting in 
dissipation in the homogenized theory derived below. 

Let P0 and v 0 be typical average values of density and 
compressional wave speed, and L some length, which can 
be identified with the length L of the Sec. I. Let co o be a 
typical value of the critical frequency co• defined in Sec. I. 
Define the dimensionless parameters 

Vo z •oL coroL 
• cocoL' X=•, 1•= , (7) Vo Vo 
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and put 

ti= , tb=e--, (8) 
poVo poVo 

where t7 and • both have the dimensions of stress. Then 

Eq. (5) becomes 

da 

dX-- -- ille( •l lr= + •12 P ) ' 
dTz• 
dX -- --ifle( • •t7--e•l•), 

(9) 

dp --il•e(•2t7--e•2:t3)--at3, dX 

where g = pov•S, and R = R/po, are dimensionless compli- 
ance and mass density matrices, and 

a(X)- (lO) 
K poO•cO' 

B. Decoupling of the pore pressure 

It is assumed that •<1, and that the four variables 
r•z, •, and p, all of which have dimensions of stress, are of 
the same order of magnitude. Then retaining only the lead- 
ing order terms in the right members of F_xt. (9) gives 

dff 

dX-- -- ille(•'• •r= + •2 P), 
(11) 

d•'zz 
dX 

and 

d• 

dX--ill (•nr•+ •22 p), 
(12) 

dX 

The bulk variables • and rzz vary slowly because of the 
presence of the factor e in their differential equations, 
whereas the pore variables • and p vary over length scales 
X=O(1). The bulk stress r= can therefore be approxi- 
mated as constant, correct to O(e), in the equations for ß 
and p, and (fi,p) can be solved for, subject to some bound- 
ary conditions discussed below. The pressure can then be 
put back into the "macroscopic" equation for t2 and 
forming a dosed system. Equations (11) and (12), al- 
though not rigorous, indicate how the pore diffusion effects 
alecouple from the bulk wave propagation, provided e•l, 
or v0,•toc0L, see Eq. (7). These rather vague but physically 
reasonable concepts will now be made more precise by 
considering the asymptotic approximation (in e) to the 
exact equations in a periodically stratified medium. It will 
become clear that the preceding approximate analysis is 
rigorously justified in an asymptotic sense. 

C. Periodic stratification 

The period is L, or unity in terms of X of Eq. (7), and 
averages of a quantity f over a unit period are denoted by 
(f). Define Po as (p), and Oo=(C•/po) •/•, where 

C,o=(1/(Kc+-•)) -• (13) 

is the effective axial stiffness of the equivalent transversely 
isotropic homogenized continuum. The suffix oo applies to 
the high-frequency limit, ll•, 1. It will be shown that v0 is 
the limiting speed of compressional waves in the high- 
frequency limit. "High frequency" means that the diffusion 
length is far less than the inhomogeneity scale, although 
the wavelength is still assumed to be much longer than any 
other characteristic length and the frequency much less 
than the reference critical frequency O•o, appearing in Eq. 
(7), which can be taken as the average of •o• through the 
unit period. The exact choice of p0, %, and o,o is arbitrary, 
and the final results should not depend upon them, but in 
principle they should be such that f•=O( 1 ) and egl. This 
allows the use of formal asymptotic methods to find the 
leading order asymptotic approximation in e to the com- 
pressional dispersion relation. 

The exact solution can be represented using Bloch 
waves, which are solutions of the form 

P(X) =O(X)d Lv, (14) 

where 0 is periodic in X, with unit period. There is a 
countably infinite set of Bloch modes, each with its own 
dispersion relation, k=k(ro), for the complex-valued wave 
number. The bulk compressional wave corresponds to the 
lowest or fundamental branch, suggesting the ansatz 

•= el-l•0n t- (eli)2]•1-1- ß ß ß . (15) 

The periodicity condition for the mode is, from Eqs. (14) 
and (15), 

P( 1 ) = P(0) [ 1 +ieflfco+O(e 2) 1. (16) 

At the same time, Eqs. (9)1 and (9) 2 can be integrated to 
give for 0<X<I, 

iT(X) =5(0)--iefl fo x (•urz•+•i2p)dX', 
(17) 

r=(X) =r=(0) --i•11 fo x •H• dX' + O(ea). 
These imply that the hulk fields u and r= are constant to 
first order in e throughout the layer, and so Eq. (17) can 
be iterated to obtain 

a(X) =t7(0)--ieflr=(O) •11 dX' 

(18) 

r•(X) =r=(O)--ieflff(O) 1•11 dX' +O(e2). 

The other pair of equations in (9) then yields, with the 
same approximations, 
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d• 

dX=ifl[•llr,,(O) +•22P] +O(E), 

-- --a•+O(E). 
dX 

(19) 

These are a pair of forced linear equations for ß and p 
driven by the macroscopic stress r=(0); the decoupling is 
now complete. The solution for p can be written as 

p(X) =q(X)r,,(O) +O(e), (20) 

where q(X) is independent of r=(O), and when this is 
substituted back into Eq. (18) explicit expressions are ob- 
tained for t7 and r:2, correct to O(e). Putting X= 1 yields 

rzz(1) )= i•n(• n) 1 

x (21) 
Compa6son with the •oquet condition (16) impli• that 
•0 is given by 

•= ((•n> + (•]2q>) (•m]>. (22) 

O. The effective medium 

It helps to rewrite the fundamental equations (19) and 
(22) in dimensional form. The latter equation implies that 
the compressional wave number for waves of the form e it• 
is k=ro/v*, where the complex-valued speed v* may be 
written 

o*= (C*/(p))t/2. (23) 
The effective modulus C* is defined as 

1 
C*--$,, $*(ro)= \K+•tt / (24) 

The dimensionless pressure P(z) is the solution to the fol- 
lowing diffusion problem defined on 0 < z < L, 

dP(z) --'! dW(z) 
---- -- W(2), -- -- [a- IP(z) -- 1 ], 
dz •r dz 

(25) 

subject to the periodic boundary conditions: P(L)=P(0) 
and 14'(L)---- W(O). The material parameter R(z) is 

a(z) =aM/(Kc+•t•). (26) 

If R (z) is constant then it is easily checked that/4,'=0 
and P=R, and the effective modulus is simply C• of Eq. 
(13). In this case the effective one-dimensional modulus is 

real and equal to the harmonic average of the one- 
dimensional confined plane strain modulus. In order to 
obtain a complex-valued C*, and hence attenuation, R 
must vary within the unit period. This could result from 
changes in any or all of the parameters •b, a, K,/•, and 
but is unaffected by changes in p, •/, or •. If the frame is 

relatively stiff, i.e., K>>K/, then a good approximation is 
M=K//q•, and correspondingly 

R=• . (27) 

Hence R is small in the stiff frame approximation, but it 
may suffer large relative change if, for instance, K/changes 
drastically. This is the mechanism behind the White model 
for rocks with partial gas saturation. 9-13 The ratio of K/for 
gas to that of either oil or water is on the order of 1:40 for 
gases under substantial confining pressure or at great 
depths, and less for unpressurized gas. One would there- 
fore expect the greatest effects for layers consisting of al- 
ternating fluid and gas zones, which is precisely the model 
solved by White et al. m and discussed in Appendix A, 
where it is shown that the solution of Eq. (25) with peri- 
odic boundary conditions gives their effective modulus ex- 
actly. 

E. The low- and high-frequency limiting moduli 

The definition of the low- and high-frequency regimes 
depends upon the length of the period L, and upon the 
spatially dependent diffusion coefficient of Eq. (25), 

[K+-•\ 
D(z)=-•MI ,-7-•-. •1, (28) 

which simplifies to D=D o (introduced in Sec. I) in the 
stiff frame limit. The low and high frequency regimes are, 
respectively, o•D/L 2, and o•.D/L 2. In the high fre- 
quency limit, the term in square brackets in Eqs. (25) 
vanishes uniformly, or P(z)=R(z), and it follows from 
Eqs. (24) and (26) that C*•C•. In the low frequency or 
static limit, Eq. (25)2 implies that W= constant, but the 
periodicity condition P(L)=P(O) combined with Eq. 
(25)• requires W=0, and hence P=constant. The con- 
stant value follows from averaging (25) 2, and when sub- 
stituted into Eq. (24) yields C*--,C 0, where the low- 
frequency or quasistatic modulus is 

CZ 2 O• --1 

Let •--=ct/(K+4/3tz), then it follows from (4), (13), and 
(29), that 

1 I • 

with equality if, and only if, R is constant. Hence, the 
limiting high-frequency speed exceeds the limiting low- 
frequency speed when R varies. For instance, in a fairly 
uniform and stiff rock structure with alternating fluid and 
gas saturation, rz, •=constant and R•I, and it can be 
shown from (23) and (30) that 
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FIG. 1. The magnitude of Av/v for compressional waves in Berea sand- 
stone with periodic layers of gas and water saturation. The fluid param- 
eters are given in Table II. The exact result follows from Eqs. (13), (23), 
and (29), and the approximate result from Eq. (34). 

v--2 (R)-- . (31) 
It is shown in Appendix B that the time-dependent re- 
sponse function associated with S*(•o) is causal. This 
means that the effective stress strain relation can be ex- 

pressed in terms of a creep function 3(0 in the form 

e•z(z,t) =S • r•z(z,t) +3( ' )*'r•(z, ' ) ( t), (32) 
where the * indicates convolution, S• = 1/C•, 

1 H(t)Re (S*-S•)e-iø•t&o, (33) 
and H(t) is the Heaviside unit step function. Thus, S© 
defines the instantaneous response, and 3(t) represents an 
additional, generally small, viscoelastic response. The mag- 
nitude of the viscoelasticity can be gauged from the iden- 
tity f•ø3(t)dt=So-S•>O, where So=l/C o [see Eq. 
(30)]. An example of the creep function is given next. 

F. The two-phase model and numerical results 

The two constituent layered model of White et aL ]o is 
probably the simplest model from an analytical point of 
view, with the explicit solution given in Eq. (A3). The 
specific case of alternating water and gas regions in Berea 
sandstone is chosen; the fluid parameters are summarized 
in Table II. The range of dispersion, Av/v = ( v 0, -- v o)/[ ( v • 
+v0)/2 ], is plotted in Fig. 1 as a function of the volume 
fraction of pore space occupied by gas. It is clear that 
maximum dispersion occurs for relatively small concentra- 
tions of gas, and would occur at even smaller values if the 
gas compressibility were greater. The gas considered here 
has a relatively high bulk modulus, corresponding to large 
overburden pressure, for example. It is interesting to ex- 
amine the approximation in Eq. (31 ) for this case. It may 
be simplified further by combining it with Eq. (27) to give 
for a gas/fluid alternating sequence in a stiff frame, 

FIG. 2. The quality factor for alternating layers of water/gas in Berea, 
with unit period of I m. 

A0 15•2( 4) -1 (gf--gg) 2 v -2•b K+ 5bt rig(l--r/g) nggf+(l--ng)Kg' 
(34) 

where r/g is the fraction of material infiltrated by gas. It is 
clear from Fig. 1 that although Eq. (34) overestimates the 
dispersion by about 30%, it correctly predicts that the 
greatest dispersion occurs at a gas fraction of about 15%. 

The change in wave speed is of secondary importance 
in comparison to the attenuation associated with the dis- 
persion. This can be described in terms of the dimension- 
less Q factor, where l/v*= ( 1 +i/2Q)/v, and v(w) is real. 
This is plotted in Fig. 2 as a function of frequency for L = 1 
m, for two different values of gas concentration. The fre- 
quency dependence was discussed extensively by White 
et al. •o for the present model and by Dutta and Od• TM for 
the spherical model, and it generally has the form shown in 
Fig. 2. These references also provide plots of the wave 
speed dispersion as a function of frequency; for purposes of 
brevity the frequency dependence of the speed will not be 
discussed here: The single peak in 1/Q in Fig. 2 is charac- 
teristic of a single dominating relaxation process, associ- 
ated with the oseillatory diffusion of water into the gas, and 
vice versa (note that in the present case the two diffusion 
coefficients are of comparable magnitude). In realistic sit- 
uations one can expect that the peak will be smeared out 
over a wide frequency range. The peak in 1/Q occurs at 
different frequencies, depending upon the relative concen- 
tration of water and gas, and is plotted in Fig. 3. The 
associated minimum value of Q is plotted in Fig. 4, from 
which it is evident that the greatest attenuation occurs at 
roughly the same gas fraction that gives the largest disper- 
sion (see Fig. 1 ). Note that the dependence of C* and v* 
upon frequency and the periodic length L occurs in the 
combination (fL2), as pointed out by Dutta and Od& 
The numerical results shown here are all for L = 1 m, so 

for example, if L = 50 cm, the frequency scales in Figs. 2 
and 3 should be multiplied by a factor of 4. 

The viscoelastic creep function 3(t) of Eq. (33) can be 
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FIG. 3. The frequency at which the quality factor is maximum in gas/ 
water saturated Berea with L= 1 m. 

computed using the explicit form of S* in Appendix A. 
The high frequency form of S* implies that $(t) has an 
inverse square root singularity for t• 0. The long time re- 
sponse is governed by the location of the singularity of 
S* (•o) which lies closest to the real axis in the w plane. 
Denoting this•by $, the behavior for large t is exponentially 
small; thus, I s I < exp ( -- cat). For the two-phase model 
of Appendix A, it can be shown that $>rr2min(D•/ 
L•,D2/L•). The transition from one regime to the other is 
evident in Fig. 5, and the characteristic time for the tran- 
sition is clearly related to the frequency at which the at- 
tenuation peaks (see Fig. 2). 

III. THE LIMITING MODULI 

The same macroscopic viscoelastic behavior found in 
the one-dimensional layered medium is also expected for 
media which are periodic in all three directions. However, 
the cases of practical interest are not periodic although 
they do display macroscopic homogeneity, as in the earth. 
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FIG. 4. The minimum possible Q as a function of gas concentration for 
the gas/water saturated Berea model. 
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FIG. 5. 'The creep function of Eq. (33) for the layered model. The inverse 
FFT was accomplished after first subtracting out the singular part. 

The simplest extension of the theory to such media would 
involve; a "representative" unit cell characteristic of the 
entire medium. This is well defined for the layered periodic 
medium, but generally requires some statistical assump- 
tions about the microstructure. It is interesting to note that 
the original theory of White, 9 for a spherical region of gas 
saturation surrounded by a shell of fluid infiltrated rock, is 
not directly related to a periodic medium. A realization of 
the White model would consist, not of periodic arrange- 
ments of the unit shell/sphere, but of a space filling com- 
posed of shell/spheres of different sizes which fill up all the 
intervening gaps. This type of model also realizes the 
Hashin-Shtrikman bounds in the theory of linear static 
elasticity for two-phase composite materials. 23'24 

Despite the limited number of models for which closed 
form expressions are available, it is possible nonetheless to 
make some general statements about the limiting low- and 
high-frequency moduli that govern elastic wave propaga- 
tion. A discussion of these moduli for the spherical White 
model may be found in references. •'•2 In general, no mat- 
ter how complex the microstructure, the disparity between 
these limiting moduli indicates the range of dispersion due 
to diffusion, and if the exact frequency dependence were 
known the Kramers-Kronig relations could be used to de- 
rive the attenuation as a function of frequency. However, it 
is safe to say that the maximum attenuation can be ex- 
pected when the dispersion is also the greatest, as borne out 
by the limited numerical results discussed above. It is also 
simpler to describe the limiting moduli than the full fre- 
quency dependence, and for that reason the remainder of 
this paper will focus on some general properties of the low- 
and high-freq. uency effective elastic moduli of a represen- 
tative sample:, i.e., the analogs of C o and Coo discussed 
above. The sample region is a volume of sufficient extent 
that it contains a statistically representative distribution of 
variations, whether the overall medium is periodic or not. 

The high.-frequency, or no-flow, moduli can be defined 
from the point-wise constitutive relations for an arbitrarily 
anisotropic frame, which are given by Eq. (3), where L½ 
are the anisotropic confined moduli. Equation (3) could be 
generalized to account for anisotropic pore fluid effects, for 
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instance, if the pores have a preferred direction. We will 
not include this possibility here. In the high-frequency 
limit the fluid viscosity restrains any fluid motion, with the 
result that there is no flow throughout the material, i.e., 
•m0, or from Eq. (3), 

r=Lce. (35) 

The inhomogeneous medium behaves as a composite elas- 
tic continuum with local stiffness L c, and the bulk or ef- 
fective medium is governed by the effective elastic moduli 
of the composite. The evaluation of the effective stiffness 
tensor is a nontrivial matter, but there is enough literature 
on the subject that it need not be of concern here; see, for 
example, Refs. 24, 25 for reviews of the subject. Thus, 
determination of the high-frequency moduli is, in principle, 
a well-defined and well-researched problem. 

In the low-frequency limit, the pressure p is constant, 
although not necessarily at the ambient level (p=0). Its 
precise value is governed by the global condition that fluid 
neither enters nor leaves the sample, i.e., 

(•) =0, (36) 

where the angular brackets now denote the spatial average 
over the representative sample. The constitutive relations 
(3) then simplify to 

r=Le--apI, •=ae+p/M, (37) 

where L are the associated frame moduli [K and/_t in the 
isotropic case, see Eq. (4)]. The prevailing value of pres- 
sure follows from (36) and (37) 2 , and when substituted in 
(37) • yields 

•'=Le4-a(M-1)-l(ote)I. (38) 

This modified constitutive relation is used in Appendices C 
and D to derive the limiting low-frequency moduli for two 
analytically tractable configurations. In Appendix C the 
full set of transversely isotropic moduli are obtained for an 
arbitrarily layered medium consisting of isotropic layers, 
generalizing the model of White et al. •o and also general- 
izing the purely elastic theory of Backus. 26 The spherically 
symmetric two-phase model of White 9 is discussed in Ap- 
pendix D. In both cases, explicit formulae are derived for 
the low- and high-frequency limiting moduli, based upon 
the stress-strain relations Eqs. (38) and (35), respectively. 

A. Thermoelastic analogy 

An alternative approach may be used to find the lim- 
iting moduli, based upon the correspondence between the 
static theory of poroelasticity and the static theory of ther- 
moelasticity which includes entropy. The correspondence 
was often discussed by Biot in his works, e.g., Reft 27, and 
has recently been used to advantage in finding some of the 
effective parameters in two-phase poroelastic media. 2s'29 
The correspondence is summarized in Appendix E, from 
which it is clear that the frame moduli L in the porous 
medium correspond to the isothermal moduli of a ther- 
moelastic medium. The connection between the other pa- 
rameters is summarized in Eq. (El). The correspondence 
is very useful because there already exists a fairly large 

literature on estimating the effective parameters of inho- 
mogeneous thermoelastic continua, e.g., Refs. 25, 24, 30. 
The problem of finding the effective moduli in the porous 
medium is therefore related to that of finding the effective 
modulus, the effective tensor of thermal expansion, and the 
effective heat capacities for an inhomogeneous thermoelas- 
tic medium. 

In the case of the high-frequency moduli, the con- 
straint that •=0 everywhere corresponds to zero entropy 
change in the thermoelastic medium, and the correspond- 
ing effective moduli are based upon the isentropic moduli 
of the inhomogeneous medium. However, the thermoelas- 
tic analogy is not directly useful for the determination of 
the high-frequency moduli of the porous medium, since the 
issue at stake is essentially the same in either case. On the 
other hand, the thermoelastic analogy is very helpful in 
determining the low-frequency moduli because there is an 
extensive literature on the corresponding problem in ther- 
moelasticity. Consider, for instance, the low-frequency ef- 
fective bulk modulus in a macroscopically isotropic me- 
dium subject to the constraint •*----(•) =0, from Eq. (36). 
The appropriate modulus is K•c, which follows from rela- 
tion (4)• for the effective medium as K•c = K* 
+ (a*)2M *, where a* and M* pertain to the effective me- 
dium. It is worth noting that Brown and Korringa 31 intro- 
duced new microstructural moduli analogous to Kg and 
Kf, which are essentially equivalent to a* and M*. In 
terms of the thermoelastie analogy, the effective frame 
modulus K* corresponds to the isothermal modulus, and 
a* and M* are related to the effective thermal expansion 
coefficient and the effective heat capacity of the ther- 
moelastic medium. Things simplify considerably for the 
case of a two-phase composite medium which is macro- 
scopically isotropic, to the extent that explicit formulas are 
given in Eq. (E2) for the effective parameters a* and M* 
in terms of the frame bulk modulus K*, and the constituent 
values of a and M in the two phases. The derivation of Eq. 
(E2) follows directly from the thermoelastic analogy and 
known results in the literature 24 for two-phase media. 
Combining (E2) and the identity (4)• for the effective 
material implies that the low-frequency modulus in any 
isotropic two-phase medium is 

[ (a) (K 1 --K 2) -- ((K) --K*) (Gt 1 --a2) ]2 
K•c =K* + (M -l) (K•--K2)2 + ((K) --K*) (a•--a2) 2' 

(39) 

For example, in the spherical White model, discussed in 
Appendix D, the effective modulus K* can be found quite 
easily, 24 

K•K2+-•2(K) 
K* - (40) 

KiK2(l/K) +•t 2 ' 

Combining Eqs. (39) and (40) shows that • is identical 
to K 0 of Eq. (D3), which was derived using the poroelas- 
ticity equations. This single example demonstrates the util- 
ity of the thermoelastic analogy, which could be used for 
more general microgeometries. 
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IV. CONCLUSION 

Wave propagation in a spatially inhomogeneous fluid- 
saturated medium has been analyzed from first principles 
by a top down approach, i.e., looking at it on the macro- 
scopic level of the wavelength, applying all of the necessary 
equations of motion and then making appropriate approx- 
imations based upon the small parameters in the problem. 
The "macroscopic" effective medium is viscoelastic with a 
well-defined, complex valued, frequency-dependent, elastic 
modulus, which may he obtained by solving an oscillatory 
diffusion problem on the scale of the inhomogeneity. The 
specific example of a periodically layered medium was con- 
sidered in detail, and it has been shown that the effective 
stiffness for a two-phase medium is in exact agreement with 
that of White et al. •o The theoretical analysis also implies 
that if the scaling of Eq. (2) applies then there is no need 
to analyze the diffusion problem using the more sophisti- 
cated Biot theory on the small scale. The "microproblem" 
can be adequately dealt with in terms of the usual quasis- 
tatic theory of diffusion in rocks? 2 

Although the solution of the oscillating diffusion prob- 
lem is generally a nontrivial matter, some idea of the level 
of dispersion can be gained from knowledge of the limiting 
low- and high-frequency moduli. These are easier to deter- 
mine and can be related to two distinct static problems for 
the inhomogeneous poroelastic medium, each associated 
with a different physical constraint. Explicit expressions 
have been obtained for the limiting bulk moduli for the 
spherical White 9 model (Appendix D), and for the full set 
of transversely isotropic moduli for a layered medium (Ap- 
pendix C). The general problem of determining these mod- 
uli can be related to the issue of finding the effective elastic 
and thermal parameters in an inhomogeneous thermoelas- 
tic material. It has been shown that by using this corre- 
spondence the limiting low-frequency bulk modulus for the 
spherical shell model of White 9 can be obtained in a rela- 
tively simple manner. 
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APPENDIX A: A TWO-PHASE STRATIFIED MEDIUM 

Consider alternating uniform layers of medium 1 and 
2, of lengths L• and L 2, L•q-L2=L. Equations (25) can 
be solved within each layer as follows, 

Pj=Aj cos(djx/ Lj) + By sin(djx/Lj) +R j, 
(AI) 

Wj= ( 1/Z•)A• sin( djx/ Lj) 

-- (1/Zj)Bj cos(djx/Lj), 
where the suffix j = 1 or 2 indicates the layer, and 

Z= • [•) e -"r/4, d= Le i•r/4. (A2) 

The effective modulus follows from Eqs. (24) and (A1) as 

C*- •'•-/• j=L2 (K+4/3fi)j djL 

X[Ajsindj+(--1)JBj(1-cosdj)]. (A3) 
The coefficients A j, B j, j= 1,2 are determined from the 
four conditions at the interfaces that P and W must be 

continuous and periodic in L. Omitting the details, it can 
be shown that 

C,--C•+i• (R I--R2) 2 Z 1 cot •+Z 2 cot • 
(A4) 

which is identical to the result of White et al.,m derived by 
a slightly different approach. It follows from the explicit 
form of (A3) that the low- and high-frequency limits of • 
are Co•O(w) and C• +O(•-•/2), respectively. 

APPENDIX B: ANALYTIC PROPERTIES OF THE 
EFFECTIVE MODULUS 

Equations (25) are a pair of coupled forced equations 
for which the corresponding homogeneous system is 

dP(z) dW(z) 
dz ----a•(z)W(z), •z =itoa2(z)P(z), (B1) 

where a•=tl/•c and a2=M-•(Kc+4fi/3)/(K+41•/3). 
Multiply (B1) 2 by the conjugate of P, integrate by parts 
and use (B1)• and the periodicity conditions on P and W 
to deduce that 

.fo%,lP12 dz 
w:= -l-- L (B2) 

foall Wl2 dz ' 

Because a I and a 2 are non-negative, any solution to the 
homogeneous; equations must correspond to a frequency on 
the negative imaginary axis. Any singularities (blow-ups) 
of the solution to Eqs. (25) must be associated with non- 
trivial solutions to the homogeneous equations, and hence 
can occur only for values of frequency on the negative 
imaginary axis. These may be discrete or continuous, cor- 
responding to poles and branch cuts, but their precise dis- 
tribution is immaterial to the present argument. By impli- 
cation, singularities of the effective compliance S*(to) of 
Eq. (24) can only lie on the negative imaginary axis in the 
complex w plane. The time-dependent response function 
associated with S*(w) is therefore real and causal by virtue 
of the properties that S*(to) is analytic in the upper half- 
plane and S*(--•o) =c.c. S*(to) for to real. 

APPENDIX C: HIGH- AND LOW-FREOUENCY MODULI 
OF A LAYERED MEDIUM 

We consider here a medium composed of layered iso- 
tropic Biot constituents, with the layering in the x 3 direc- 
tion. The high-frequency or no-flow moduli follow by ap- 
plying the theory of Backus 26 to (3) with • = 0, resulting in 
an effective medium with transverse isotropy and moduli 
ell, C13, C33, C55, and C66. These are obtained from the 
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Backus algorithm using the inhomogeneous moduli K½ and 
/_t. In particular, C33=Co•, where C•o is defined in Eq. 
(13). 

The low-frequency moduli •:l, •13, •33, •s5, and •66 
are defined by the constraint that p is constant such that 
(_•) =0. The effective shear moduli are unaffected, so that 
Css = C55, •66 = C66. The effective moduli of a layered an- 
isotropic medium can be generated by rewriting the stress- 
strain relations in a form that expresses the variables 
(e13,e23,e33,Yll,•'22,•'12) in terms of the global constants 
(eil,e22,e12,•'13,•'23,•'33). The same procedure is used here, 
with the distinction that the apparent starting point, Eq. 
(38), already contains an average of e33. We can eliminate 
this by first using the general relations to express • in terms 
of "constants," yielding 

[ 2/.t (2,• + 2/x + aA) Tll] I / 2/-t (J. +aA) 
e33] [ -- (•+•A) 

23tOt+a,4) 

2it (2)• q- 2it q- aA) 

- 

The average values of the quantities on the left of this 
equation follow by averaging the matrix on the right, since 
e n, e22, and T33 are constant, by assumption. The effective 
moduli can then be read off, yielding 

--1 

•"33 \ )•-{- 2//0 / ' •13• • •33, 
(c5) 

We note that •33•C0, defined in •. (29). 
It is interesting to note that in each of the low- 

frequency moduli •, •3, and •33, the effect of the pore 
fluid enters only through the parameter (a2/(• + 2•) + 1 / 
M) •, in which M enters only through its harmonic aver- 
age. In the stiff frame approximation this term is approxi- 
mately (4/Kf) -•, which is much smaller than te•s like 
(1/(2 + 2•))- •. The differences between the low- 
frequency moduli and the no-flow moduli are therefore 
small and on the order of (•/Kf) -1 in magnitude. The 
effective moduli can be simply approximated in this limit. 
For example, if the frame is spatially unifo• but the pa- 
rameter M varies, then the stiff-frame approximation im- 
plies that to first order in M the low-frequency effective 
medium is isotropic with shear modulus • and bulk mod- 
ulus 

•=K+a2(M -•) -•. (C6) 

However, the no-flow or high-frequency moduli are trans- 
versely isotropic to first order with C55= C66= g and 

(c7) 
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where y=A+2/•. The condition (•)=0 implies 

p = I A (ell q- e22) -- B•'33 , 

where 

/ 1 a2\--1 a 

Substitution of (C2) 
stresses and strains, 

(C1) 

(C2) 

I 1 o• 2 -1 

(C3) 

into (37): gives, ignoring shear 

/• + 2•aB] [ ell ] 
• + 21taB ] J e22 [ . 

1-aB J [T33] 

(C4) 

APPENDIX D: THE LIMITING MODULI FOR WHITE'S 
SPHERICAL MODEL 

White's 9 model of a gas pocket consists of a spherical 
region of radius a with material I (gas) surrounded by a 
shell of material 2 with exterior radius b. Consider the 

low-frequency limiting moduli first. Let e I and e 2 be the 
averaged bulk dilatation in each region, then the spheri- 
cally symmetric solution to the static equations of elasticity 
with Eq. (38) yields 

½l •-t', ?'(a, 

•r= [ e 2 A 
[ •- r-- 4•2r 2 , r) a, 

(DI) 

'Klel+Ct•B, r<a, •'rr= ,K2e2+A/r3 +a2 B, r> a, 
where A and B are constants with B= (M -1) -l(ae). The 
displacement at the exterior surface (r= b) is related to the 
average strain by u•= (e)b/3. The effective low-frequency 
modulus is then Ko=%(b)/(e), or by simple manipula- 
tions, 

K0 = ((Ke) + B(a))/(e). (D2) 

The unknowns e I , e 2, and A are found using the two con- 
ditions that u, and •'• are continuous at r=a. Substitution 
of el and e 2 into Eq. (D2) gives 

K:K2 q- •tt2 (K) q- (M -l ) -I(KiK2(ct2/K) q- •2(a) 2 ) 
K0-- 

K:K2(l/K) q--•2 q- ( M-I ) --1((t22) __ (a)2) 
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Dutta and Od6 t2 obtained K 0 in the particular case that the 
frame is the same in both regions, i.e., K•=K2=K, a• 
=a2=a, and/-h =P2=/-t, for which Eq. (D3) simplifies to 

Ko=K+ct2(M -•) -•, (D4) 

in agreement with Eq. (A-27) of Dutta and Od•. 12 Note 
the similarity with the approximation Eq. (C6). Equation 
(D4) can be rewritten K0=K+cr2)O, where )0 is given by 
Eq. (9) 2 but with Kœ replaced by its harmonic average, i.e., 
Wood's formula. 

The high-frequency or no-flow bulk modulus follows 
from Eq. (D3) by deleting the terms involving (M-l) -t 
and replacing K t and K 2 by the corresponding confined 
moduli, 

KctK½2 + • IX2 (Ke) 

K• -KclKc2 (1/K½) +• P2' (DS) 
If (K½•--Kc2)(Pt--/-t2) > 0, then Eq. (DS) is precisely the 
Hashin-Shtrikman upper (lower) bound •3'25 for the mod- 
ulus of any isotropic composite medium of materials 1 and 
2 such that p2)Pl(P2 <Pl)' If Pt =P2, the bounds coin- 
cide and thus Eq. (D5) is exact, independent of the mi- 
crostructure, a result' due to Hill. 32 This means that Eq. 
(D5) is exact for any uniform frame (i.e., K1 =K 2,/q=P2 
and a• =a 2) infiltrated by two fluids in a statistically iso- 
tropic manner, in which case the modulus simplifies to 

/ (g+-•)(M) -{-1512M1M2 • 
K• =K+a2[ ---- ' [ K +_•_i_ct2M1M2( i--• }. (D6) 

The difference between the high- and low-frequency mod- 
uli is therefore, from Eqs. (D4) and (D6), 

K• --K0= [ct-2+M1M2(l/M) (K+-•)- l] - t 

X ((M) -- (1/M)-t) >0, (D7) 

which may be compared with the analogous inequality 
(30) for the 1-D moduli. 

APPENDIX E: THE POROELASTIC-THERMOELASTIC 
CORRESPONDENCE 

The constitutive equations for an isotropic thermoelas- 
tic medium 33 can be cast in exactly the same form as Eq. 
(3) if the 'following equivalence is observed between the 
parameters 

(p,•,K c,a,M),•( O,s,K s,3K/5,1/CO. (El) 

Here, 0 is the temperature variation from its ambient value 
00, s is the entropy per unit volume,/5 is the coefficient of 
thermal expansion, and OoC v is the heat capacity per unit 
volume at constant stress. The isentropic bulk modulus K, 
is related to the isothermal modulus K by a formula anal- 
ogous to (4) t . Having made the correspondence Eq. (El), 
known results for the effective values of/5* and C• in mac- 
roscopically isotropic two-component media can be used to 
get expressions for a* and M*. Explicit formulas for/5* 
and C• are given by Christensen, 24 where C•= Co+ 9K/5 2 is 

the specific heat at constant pressure. Translating these 
into the poroelastic variables implies the identities 28'29 

•1 --Or2 • ct*--(ct),=(Ki_K2)(K --(K)), 
1 •-- (:•) :--[Ki_K: ] (K*--(K) ). 

(E2) 
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